Mechanistically informed data-driven modeling of cyclic plasticity via artificial neural networks

人工神经网络 桁架 计算机科学 有限元法 算法 可靠性(半导体) 数据驱动 生物系统 人工智能 结构工程 工程类 功率(物理) 物理 量子力学 生物
作者
Daoping Liu,Hang Yang,Khalil I. Elkhodary,Shan Tang,Wing Kam Liu,Xu Guo
出处
期刊:Computer Methods in Applied Mechanics and Engineering [Elsevier BV]
卷期号:393: 114766-114766 被引量:11
标识
DOI:10.1016/j.cma.2022.114766
摘要

A mechanistically informed data-driven approach is proposed to simulate the complex plastic behavior of microstructured/homogenized solids subjected to cyclic loading, especially to simulate the Masing effect. Our proposed approach avoids the complicated mathematical construction of an appropriate yield surface, and does not require a large amount of data for training, by virtue of its mechanistic character, which couples the methods and tools of data science to the principles of mechanics. Specifically, a data-processing method is herein advanced to extract specific internal variables that characterize cyclic plastic behavior, which cannot be measured directly via physical experiments. A yield surface, represented by an artificial neural network (ANN), is then trained by stress–strain data and the extracted internal variables. Finally, the ANN is integrated into a finite element computational framework to solve different boundary value problems (BVPs). Results for demonstrative examples are presented, which illustrate the effectiveness and the reliability of the proposed approach for solids containing voids and particles in their microstructure. Compared with direct numerical simulation (DNS), our approach seems to predict the average levels of stress and plastic strain under cyclic loading more efficiently, as well as the regions of strain localization. In addition, results for a homogenized three-dimensional truss structure demonstrate that our approach can accurately describe the evolution of key internal variables. Our mechanistic approach requires much less data than the general pure data-driven methods, which shows a possible computational efficiency compared with the pure data-driven approach. Limitations of our proposed approach are also discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
洛奇发布了新的文献求助10
1秒前
1秒前
紧张的绿茶完成签到,获得积分10
1秒前
2秒前
抬头望月发布了新的文献求助10
2秒前
2秒前
迷人问兰发布了新的文献求助10
2秒前
1444791378完成签到,获得积分10
2秒前
鸣笛应助简化为采纳,获得30
3秒前
3秒前
汉堡包应助长生子108yspa采纳,获得10
4秒前
Cathy发布了新的文献求助10
4秒前
4秒前
5秒前
yookia应助ornot君君采纳,获得10
5秒前
英俊的铭应助风中的嚓茶采纳,获得10
6秒前
6秒前
陈瑶完成签到 ,获得积分10
6秒前
momo发布了新的文献求助10
6秒前
dgd发布了新的文献求助10
6秒前
yu完成签到,获得积分10
7秒前
奶黄包应助小立碗藓采纳,获得10
7秒前
szc-2000发布了新的文献求助10
7秒前
8秒前
李爱国应助根瘤君采纳,获得10
8秒前
腼腆的修杰完成签到,获得积分10
9秒前
华仔应助乌拉挂机采纳,获得10
9秒前
9秒前
10秒前
JC325T发布了新的文献求助10
10秒前
10秒前
pluto应助hyq008采纳,获得10
10秒前
chang发布了新的文献求助10
11秒前
Thorns完成签到,获得积分10
11秒前
赘婿应助oak采纳,获得10
11秒前
完美世界应助调皮钻石采纳,获得10
12秒前
未何发布了新的文献求助10
12秒前
jimmyzzz应助沐沐采纳,获得20
12秒前
12秒前
周雪峰发布了新的文献求助10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
亚硝酸脂溶解度的测定及其传质研究 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3948144
求助须知:如何正确求助?哪些是违规求助? 3493409
关于积分的说明 11069280
捐赠科研通 3224110
什么是DOI,文献DOI怎么找? 1782187
邀请新用户注册赠送积分活动 866805
科研通“疑难数据库(出版商)”最低求助积分说明 800440