A case-based interpretable deep learning model for classification of mass lesions in digital mammography

可解释性 人工智能 计算机科学 乳腺摄影术 机器学习 人工神经网络 边距(机器学习) 数字乳腺摄影术 深度学习 卷积神经网络 医学 乳腺癌 癌症 内科学
作者
Alina Jade Barnett,Fides R. Schwartz,Chaofan Tao,Chaofan Chen,Yinhao Ren,Joseph Y. Lo,Cynthia Rudin
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:3 (12): 1061-1070 被引量:88
标识
DOI:10.1038/s42256-021-00423-x
摘要

Interpretability in machine learning models is important in high-stakes decisions such as whether to order a biopsy based on a mammographic exam. Mammography poses important challenges that are not present in other computer vision tasks: datasets are small, confounding information is present and it can be difficult even for a radiologist to decide between watchful waiting and biopsy based on a mammogram alone. In this work we present a framework for interpretable machine learning-based mammography. In addition to predicting whether a lesion is malignant or benign, our work aims to follow the reasoning processes of radiologists in detecting clinically relevant semantic features of each image, such as the characteristics of the mass margins. The framework includes a novel interpretable neural network algorithm that uses case-based reasoning for mammography. Our algorithm can incorporate a combination of data with whole image labelling and data with pixel-wise annotations, leading to better accuracy and interpretability even with a small number of images. Our interpretable models are able to highlight the classification-relevant parts of the image, whereas other methods highlight healthy tissue and confounding information. Our models are decision aids—rather than decision makers—and aim for better overall human–machine collaboration. We do not observe a loss in mass margin classification accuracy over a black box neural network trained on the same data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
一川烟叶完成签到,获得积分10
刚刚
刚刚
prayer发布了新的文献求助30
1秒前
yimin发布了新的文献求助10
1秒前
2秒前
田田田田完成签到,获得积分10
2秒前
负责之柔完成签到,获得积分10
2秒前
JamesPei应助卤蛋采纳,获得30
3秒前
庾楼月宛如昨完成签到 ,获得积分10
4秒前
4秒前
4秒前
uu发布了新的文献求助10
5秒前
5秒前
鱼柒完成签到 ,获得积分10
6秒前
FashionBoy应助快飞飞采纳,获得10
6秒前
酷波er应助橘子采纳,获得10
6秒前
7秒前
9秒前
魔幻代梅发布了新的文献求助10
9秒前
10秒前
失眠醉易应助大气亦巧采纳,获得10
10秒前
bailing128完成签到,获得积分10
10秒前
852应助典雅的俊驰采纳,获得10
11秒前
赘婿应助咕噜仔采纳,获得10
11秒前
科研通AI5应助cmzb采纳,获得10
12秒前
NexusExplorer应助zzj采纳,获得10
12秒前
丘比特应助awoe采纳,获得10
12秒前
13秒前
张小慧发布了新的文献求助10
13秒前
14秒前
大模型应助YUN采纳,获得10
15秒前
沙沙完成签到 ,获得积分0
15秒前
way完成签到,获得积分10
15秒前
大胆易巧完成签到 ,获得积分10
16秒前
16秒前
wxz完成签到,获得积分10
17秒前
17秒前
18秒前
咕噜仔完成签到,获得积分10
19秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796339
求助须知:如何正确求助?哪些是违规求助? 3341373
关于积分的说明 10306159
捐赠科研通 3057930
什么是DOI,文献DOI怎么找? 1677992
邀请新用户注册赠送积分活动 805746
科研通“疑难数据库(出版商)”最低求助积分说明 762775