A case-based interpretable deep learning model for classification of mass lesions in digital mammography

可解释性 人工智能 计算机科学 乳腺摄影术 机器学习 人工神经网络 边距(机器学习) 数字乳腺摄影术 深度学习 卷积神经网络 医学 乳腺癌 癌症 内科学
作者
Alina Jade Barnett,Fides R. Schwartz,Chaofan Tao,Chaofan Chen,Yinhao Ren,Joseph Y. Lo,Cynthia Rudin
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:3 (12): 1061-1070 被引量:128
标识
DOI:10.1038/s42256-021-00423-x
摘要

Interpretability in machine learning models is important in high-stakes decisions such as whether to order a biopsy based on a mammographic exam. Mammography poses important challenges that are not present in other computer vision tasks: datasets are small, confounding information is present and it can be difficult even for a radiologist to decide between watchful waiting and biopsy based on a mammogram alone. In this work we present a framework for interpretable machine learning-based mammography. In addition to predicting whether a lesion is malignant or benign, our work aims to follow the reasoning processes of radiologists in detecting clinically relevant semantic features of each image, such as the characteristics of the mass margins. The framework includes a novel interpretable neural network algorithm that uses case-based reasoning for mammography. Our algorithm can incorporate a combination of data with whole image labelling and data with pixel-wise annotations, leading to better accuracy and interpretability even with a small number of images. Our interpretable models are able to highlight the classification-relevant parts of the image, whereas other methods highlight healthy tissue and confounding information. Our models are decision aids—rather than decision makers—and aim for better overall human–machine collaboration. We do not observe a loss in mass margin classification accuracy over a black box neural network trained on the same data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hahah发布了新的文献求助10
1秒前
2秒前
tczw667完成签到,获得积分10
3秒前
4秒前
4秒前
苗条八宝粥完成签到,获得积分10
5秒前
不咸完成签到,获得积分10
5秒前
樱铃发布了新的文献求助10
5秒前
JamesPei应助韩韩采纳,获得10
5秒前
睿睿发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
5秒前
6秒前
柚子完成签到 ,获得积分10
7秒前
李健的小迷弟应助不咸采纳,获得10
7秒前
清风完成签到,获得积分20
9秒前
9秒前
10秒前
10秒前
11秒前
一个完成签到,获得积分10
11秒前
12秒前
寂寞的亦云完成签到,获得积分10
12秒前
嘿嘿发布了新的文献求助10
12秒前
阿不思完成签到 ,获得积分10
13秒前
13秒前
一个发布了新的文献求助10
14秒前
王志杰发布了新的文献求助10
15秒前
小冉完成签到,获得积分10
15秒前
15秒前
15秒前
otto12306完成签到,获得积分10
15秒前
16秒前
王柯发布了新的文献求助10
16秒前
17秒前
花木完成签到,获得积分10
18秒前
杨山坡完成签到,获得积分10
18秒前
Ya发布了新的文献求助10
18秒前
量子星尘发布了新的文献求助10
19秒前
爱吃香菜发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Minimizing the Effects of Phase Quantization Errors in an Electronically Scanned Array 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5532650
求助须知:如何正确求助?哪些是违规求助? 4621382
关于积分的说明 14577620
捐赠科研通 4561234
什么是DOI,文献DOI怎么找? 2499258
邀请新用户注册赠送积分活动 1479203
关于科研通互助平台的介绍 1450406