Learning the Evolutionary and Multi-scale Graph Structure for Multivariate Time Series Forecasting

邻接矩阵 计算机科学 图形 时间序列 系列(地层学) 人工智能 人工神经网络 邻接表 理论计算机科学 算法 机器学习 生物 古生物学
作者
Junchen Ye,Zihan Liu,Bowen Du,Leilei Sun,Weimiao Li,Yanjie Fu,Hui Xiong
标识
DOI:10.1145/3534678.3539274
摘要

Recent studies have shown great promise in applying graph neural networks for multivariate time series forecasting, where the interactions of time series are described as a graph structure and the variables are represented as the graph nodes. Along this line, existing methods usually assume that the graph structure (or the adjacency matrix), which determines the aggregation manner of graph neural network, is fixed either by definition or self-learning. However, the interactions of variables can be dynamic and evolutionary in real-world scenarios. Furthermore, the interactions of time series are quite different if they are observed at different time scales. To equip the graph neural network with a flexible and practical graph structure, in this paper, we investigate how to model the evolutionary and multi-scale interactions of time series. In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations among time series. Then, a series of adjacency matrices are constructed under a recurrent manner to represent the evolving correlations at each layer. Moreover, a unified neural network is provided to integrate the components above to get the final prediction. In this way, we can capture the pair-wise correlations and temporal dependency simultaneously. Finally, experiments on both single-step and multi-step forecasting tasks demonstrate the superiority of our method over the state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NexusExplorer应助震动的雅柔采纳,获得10
2秒前
yuntong发布了新的文献求助20
3秒前
4秒前
w_yF完成签到,获得积分20
4秒前
妩媚的代玉完成签到 ,获得积分10
6秒前
6秒前
阿威发布了新的文献求助10
7秒前
CodeCraft应助闲看花季采纳,获得10
9秒前
CodeCraft应助heavenhorse采纳,获得30
9秒前
Liusir发布了新的文献求助10
9秒前
NexusExplorer应助Tzzl0226采纳,获得150
10秒前
11秒前
13秒前
不去明知山完成签到 ,获得积分10
13秒前
爱听歌树叶完成签到,获得积分20
13秒前
科研通AI2S应助huoguo采纳,获得10
14秒前
一只菜鸡发布了新的文献求助10
17秒前
阿威完成签到,获得积分10
17秒前
18秒前
归尘发布了新的文献求助10
18秒前
18秒前
19秒前
21秒前
22秒前
01发布了新的文献求助30
22秒前
和谐山灵发布了新的文献求助10
22秒前
LYSM发布了新的文献求助10
24秒前
zzzyc发布了新的文献求助10
26秒前
clueless发布了新的文献求助10
28秒前
28秒前
傲娇的小猫咪完成签到,获得积分20
28秒前
星辰大海应助萌dreaming采纳,获得10
29秒前
科研通AI5应助tingsHHH采纳,获得10
32秒前
斯文败类应助灰色与青采纳,获得10
33秒前
15778881974发布了新的文献求助10
33秒前
仁和完成签到,获得积分10
33秒前
33秒前
可乐完成签到 ,获得积分10
34秒前
诸葛御风应助宏伟采纳,获得30
35秒前
tong发布了新的文献求助10
35秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3797954
求助须知:如何正确求助?哪些是违规求助? 3343409
关于积分的说明 10315984
捐赠科研通 3060189
什么是DOI,文献DOI怎么找? 1679350
邀请新用户注册赠送积分活动 806524
科研通“疑难数据库(出版商)”最低求助积分说明 763201