已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Beluga whale optimization: A novel nature-inspired metaheuristic algorithm

元启发式 水准点(测量) 计算机科学 白鲸 算法 鲸鱼 可扩展性 Bat算法 人工智能 粒子群优化 地理 地图学 北极的 渔业 生物 生态学 数据库
作者
Changting Zhong,Gang Li,Zeng Meng
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:251: 109215-109215 被引量:608
标识
DOI:10.1016/j.knosys.2022.109215
摘要

In this paper, a novel swarm-based metaheuristic algorithm inspired from the behaviors of beluga whales, called beluga whale optimization (BWO), is presented to solve optimization problem. Three phases of exploration, exploitation and whale fall are established in BWO, corresponding to the behaviors of pair swim, prey, and whale fall, respectively. The balance factor and probability of whale fall in BWO are self-adaptive which play significant roles to control the ability of exploration and exploitation. Besides, the Levy flight is introduced to enhance the global convergence in the exploitation phase. The effectiveness of the proposed BWO is tested using 30 benchmark functions, with qualitative, quantitative and scalability analysis, and the statistical results are compared with 15 other metaheuristic algorithms. According to the results and discussion, BWO is a competitive algorithm in solving unimodal and multimodal optimization problems, and the overall rank of BWO is the first in the scalability analysis of benchmark functions among compared metaheuristic algorithms through the Friedman ranking test. Finally, four engineering problems demonstrate the merits and potential of BWO in solving complex real-world optimization problems. The source code of BWO is currently available to public: https://ww2.mathworks.cn/matlabcentral/fileexchange/112830-beluga-whale-optimization-bwo/ . • A novel metaheuristic algorithm named as Beluga Whale Optimization (BWO) is proposed. • The behaviors of swim, prey and whale fall are designed on BWO algorithm. • The BWO is tested on 30 well-known benchmark functions and 4 engineering problems. • The BWO is compared with 15 well-known metaheuristic algorithms. • The BWO outperforms comparing algorithms in benchmark functions, especially for scalability of dimension.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kentonchow应助Jonathan采纳,获得10
2秒前
QAQ完成签到 ,获得积分10
4秒前
6秒前
6秒前
8秒前
8秒前
10秒前
11秒前
勤能补拙发布了新的文献求助10
11秒前
ni发布了新的文献求助10
11秒前
会飞的流氓兔完成签到 ,获得积分10
12秒前
13秒前
13秒前
打打应助zzly采纳,获得10
15秒前
迷路的蛟凤完成签到,获得积分10
18秒前
18秒前
洞两发布了新的文献求助10
20秒前
21秒前
Moomba完成签到 ,获得积分10
23秒前
205完成签到 ,获得积分10
23秒前
xixi发布了新的文献求助30
24秒前
TCMning发布了新的文献求助10
24秒前
汤姆完成签到,获得积分10
26秒前
合适尔蝶发布了新的文献求助10
26秒前
wx关注了科研通微信公众号
28秒前
icelatte完成签到,获得积分10
29秒前
129完成签到 ,获得积分10
30秒前
31秒前
ding应助Jamestangbw采纳,获得10
31秒前
32秒前
思源应助tiri采纳,获得10
33秒前
乐乐应助勤能补拙采纳,获得10
35秒前
仲秋二三应助善良又亦采纳,获得10
35秒前
Ava应助CNS_Fighter88采纳,获得10
35秒前
WangLu2025完成签到 ,获得积分10
36秒前
tuanheqi应助上楼都费劲采纳,获得80
36秒前
lilin完成签到,获得积分10
36秒前
虔三愿发布了新的文献求助10
37秒前
39秒前
轻松的小海豚完成签到 ,获得积分10
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Bandwidth Choice for Bias Estimators in Dynamic Nonlinear Panel Models 2000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5355997
求助须知:如何正确求助?哪些是违规求助? 4487796
关于积分的说明 13971120
捐赠科研通 4388602
什么是DOI,文献DOI怎么找? 2411155
邀请新用户注册赠送积分活动 1403696
关于科研通互助平台的介绍 1377356