A 3D reconstruction method of porous media based on improved WGAN-GP

计算机科学 人工智能 卷积神经网络 卷积(计算机科学) 特征(语言学) 模式识别(心理学) 三维重建 多孔介质 修补 深度学习 图层(电子) 生成对抗网络 人工神经网络 图像(数学) 多孔性 地质学 材料科学 哲学 语言学 岩土工程 复合材料
作者
Ting Zhang,Qingyang Liu,Tonghua Wang,Xin Ji,Yi Du
出处
期刊:Computers & Geosciences [Elsevier BV]
卷期号:165: 105151-105151 被引量:6
标识
DOI:10.1016/j.cageo.2022.105151
摘要

The reconstruction of porous media is important to the development of petroleum industry, but the accurate characterization of the internal structures of porous media is difficult since these structures cannot be directly described using some formulae or languages. As one of the mainstream technologies for reconstructing porous media, numerical reconstruction technology can reconstruct pore structures similar to the real pore spaces through numerical generation and has the advantages of low cost and good reusability compared to imaging methods. One of the recent variants of generative adversarial network (GAN), Wasserstein GAN with gradient penalty (WGAN-GP), has shown favorable capability of extracting features for generating or reconstructing similar images with training images. Therefore, a 3D reconstruction method of porous media based on an improved WGAN-GP is presented in this paper, in which the original multi-layer perceptron (MLP) in WGAN-GP is replaced by convolutional neural network (CNN) since CNN is composed of deep convolution structures with strong feature learning abilities. The proposed method uses real 3D images as training images and finally generates 3D reconstruction of porous media with the features of training images. Compared with some traditional numerical generation methods and WGAN-GP, this method has certain advantages in terms of reconstruction quality and efficiency.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
想要毕业完成签到,获得积分10
刚刚
积极的初瑶完成签到,获得积分10
1秒前
caicai完成签到 ,获得积分10
4秒前
dox应助路由器采纳,获得10
4秒前
噼里啪啦完成签到,获得积分10
6秒前
悦耳的绿海完成签到 ,获得积分10
6秒前
欢喜火完成签到,获得积分10
6秒前
7秒前
孙燕应助guozizi采纳,获得10
11秒前
orixero应助吐司采纳,获得10
12秒前
SYLH应助obaica采纳,获得10
13秒前
Pu发布了新的文献求助10
13秒前
13秒前
敏er好学发布了新的文献求助10
14秒前
Akim应助十一月的阴天采纳,获得10
14秒前
王哪跑发布了新的文献求助10
14秒前
15秒前
15秒前
科研通AI5应助shuanglin采纳,获得30
17秒前
华西招生版完成签到,获得积分10
17秒前
18秒前
zho应助摩登灰太狼采纳,获得10
21秒前
一帆风顺发布了新的文献求助10
21秒前
Hello应助科研通管家采纳,获得10
21秒前
共享精神应助科研通管家采纳,获得10
21秒前
qduxl应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
22秒前
CodeCraft应助科研通管家采纳,获得10
22秒前
nature24应助科研通管家采纳,获得10
22秒前
wanci应助科研通管家采纳,获得30
22秒前
完美世界应助科研通管家采纳,获得10
22秒前
22秒前
22秒前
xixi发布了新的文献求助10
22秒前
OKOK发布了新的文献求助10
24秒前
26秒前
26秒前
深海关注了科研通微信公众号
28秒前
Ava应助机灵的沛容采纳,获得10
28秒前
吐司发布了新的文献求助10
30秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844596
求助须知:如何正确求助?哪些是违规求助? 3386985
关于积分的说明 10547099
捐赠科研通 3107526
什么是DOI,文献DOI怎么找? 1711853
邀请新用户注册赠送积分活动 824208
科研通“疑难数据库(出版商)”最低求助积分说明 774638