推荐系统
计算机科学
人工智能
深度学习
协同过滤
机器学习
情报检索
作者
Ruiqi Zheng,Liang Qu,Bin Cui,Yuhui Shi,Hongzhi Yin
出处
期刊:Cornell University - arXiv
日期:2022-01-01
被引量:1
标识
DOI:10.48550/arxiv.2203.13922
摘要
Recommender systems play a significant role in information filtering and have been utilized in different scenarios, such as e-commerce and social media. With the prosperity of deep learning, deep recommender systems show superior performance by capturing non-linear information and item-user relationships. However, the design of deep recommender systems heavily relies on human experiences and expert knowledge. To tackle this problem, Automated Machine Learning (AutoML) is introduced to automatically search for the proper candidates for different parts of deep recommender systems. This survey performs a comprehensive review of the literature in this field. Firstly, we propose an abstract concept for AutoML for deep recommender systems (AutoRecSys) that describes its building blocks and distinguishes it from conventional AutoML techniques and recommender systems. Secondly, we present a taxonomy as a classification framework containing feature selection search, embedding dimension search, feature interaction search, model architecture search, and other components search. Furthermore, we put a particular emphasis on the search space and search strategy, as they are the common thread to connect all methods within each category and enable practitioners to analyze and compare various approaches. Finally, we propose four future promising research directions that will lead this line of research.
科研通智能强力驱动
Strongly Powered by AbleSci AI