Molecular contrastive learning of representations via graph neural networks

分子图 计算机科学 人工神经网络 人工智能 化学信息学 图形 化学空间 机器学习 可微函数 自编码 理论计算机科学 药物发现 数学 化学 生物化学 计算化学 数学分析
作者
Yuyang Wang,Jianren Wang,Zhonglin Cao,Amir Barati Farimani
出处
期刊:Nature Machine Intelligence [Springer Nature]
卷期号:4 (3): 279-287 被引量:701
标识
DOI:10.1038/s42256-022-00447-x
摘要

Molecular machine learning bears promise for efficient molecular property prediction and drug discovery. However, labelled molecule data can be expensive and time consuming to acquire. Due to the limited labelled data, it is a great challenge for supervised-learning machine learning models to generalize to the giant chemical space. Here we present MolCLR (Molecular Contrastive Learning of Representations via Graph Neural Networks), a self-supervised learning framework that leverages large unlabelled data (~10 million unique molecules). In MolCLR pre-training, we build molecule graphs and develop graph-neural-network encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking, bond deletion and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework significantly improves the performance of graph-neural-network encoders on various molecular property benchmarks including both classification and regression tasks. Benefiting from pre-training on the large unlabelled database, MolCLR even achieves state of the art on several challenging benchmarks after fine-tuning. In addition, further investigations demonstrate that MolCLR learns to embed molecules into representations that can distinguish chemically reasonable molecular similarities. Molecular representations are hard to design due to the large size of the chemical space, the amount of potentially important information in a molecular structure and the relatively low number of annotated molecules. Still, the quality of these representations is vital for computational models trying to predict molecular properties. Wang et al. present a contrastive learning approach to provide differentiable representations from unlabelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
wuyanchi发布了新的文献求助10
2秒前
xiaoxixiccccc发布了新的文献求助10
2秒前
李爱国应助洁净的嘉熙采纳,获得10
3秒前
3秒前
CipherSage应助赎罪采纳,获得10
3秒前
4秒前
4秒前
彳亍发布了新的文献求助10
5秒前
斯文败类应助ff采纳,获得10
5秒前
5秒前
积极的曼彤完成签到,获得积分10
6秒前
微笑的依凝完成签到,获得积分10
7秒前
7秒前
英姑应助Orrise采纳,获得10
7秒前
8秒前
量子星尘发布了新的文献求助30
8秒前
8秒前
Stting完成签到 ,获得积分10
9秒前
斯文败类应助frictionhzre采纳,获得10
9秒前
9秒前
如意愚志发布了新的文献求助10
9秒前
飞快的书南完成签到 ,获得积分10
10秒前
10秒前
小田博士发布了新的文献求助10
10秒前
10秒前
妖精发布了新的文献求助10
10秒前
温霜降发布了新的文献求助30
10秒前
勤奋的曼香完成签到,获得积分20
10秒前
11秒前
sopha发布了新的文献求助10
11秒前
11秒前
11秒前
12秒前
12秒前
7_蜗牛发布了新的文献求助10
12秒前
倦鸟归林完成签到,获得积分10
13秒前
13秒前
13秒前
KiligStitch发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5722200
求助须知:如何正确求助?哪些是违规求助? 5269082
关于积分的说明 15296085
捐赠科研通 4871311
什么是DOI,文献DOI怎么找? 2615904
邀请新用户注册赠送积分活动 1565718
关于科研通互助平台的介绍 1522616