Molecular contrastive learning of representations via graph neural networks

分子图 计算机科学 人工神经网络 人工智能 化学信息学 图形 化学空间 机器学习 可微函数 自编码 理论计算机科学 药物发现 数学 化学 生物化学 计算化学 数学分析
作者
Yuyang Wang,Jianren Wang,Zhonglin Cao,Amir Barati Farimani
出处
期刊:Nature Machine Intelligence [Nature Portfolio]
卷期号:4 (3): 279-287 被引量:479
标识
DOI:10.1038/s42256-022-00447-x
摘要

Molecular machine learning bears promise for efficient molecular property prediction and drug discovery. However, labelled molecule data can be expensive and time consuming to acquire. Due to the limited labelled data, it is a great challenge for supervised-learning machine learning models to generalize to the giant chemical space. Here we present MolCLR (Molecular Contrastive Learning of Representations via Graph Neural Networks), a self-supervised learning framework that leverages large unlabelled data (~10 million unique molecules). In MolCLR pre-training, we build molecule graphs and develop graph-neural-network encoders to learn differentiable representations. Three molecule graph augmentations are proposed: atom masking, bond deletion and subgraph removal. A contrastive estimator maximizes the agreement of augmentations from the same molecule while minimizing the agreement of different molecules. Experiments show that our contrastive learning framework significantly improves the performance of graph-neural-network encoders on various molecular property benchmarks including both classification and regression tasks. Benefiting from pre-training on the large unlabelled database, MolCLR even achieves state of the art on several challenging benchmarks after fine-tuning. In addition, further investigations demonstrate that MolCLR learns to embed molecules into representations that can distinguish chemically reasonable molecular similarities. Molecular representations are hard to design due to the large size of the chemical space, the amount of potentially important information in a molecular structure and the relatively low number of annotated molecules. Still, the quality of these representations is vital for computational models trying to predict molecular properties. Wang et al. present a contrastive learning approach to provide differentiable representations from unlabelled data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Cc完成签到,获得积分10
刚刚
刚刚
虎妞完成签到 ,获得积分10
2秒前
2秒前
子虚一尘完成签到,获得积分10
2秒前
zhaowen完成签到,获得积分10
2秒前
小蘑菇应助大题狂做采纳,获得30
3秒前
冗余完成签到,获得积分10
3秒前
jack应助木木采纳,获得10
4秒前
鸣笛应助木木采纳,获得30
4秒前
清风挽歌发布了新的文献求助10
4秒前
Dada应助木木采纳,获得10
4秒前
jack应助木木采纳,获得10
4秒前
916应助木木采纳,获得10
4秒前
916应助木木采纳,获得10
4秒前
jack应助木木采纳,获得10
4秒前
脑洞疼应助木木采纳,获得10
4秒前
小柒发布了新的文献求助10
4秒前
热木发布了新的文献求助10
4秒前
安寒发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
失眠的艳完成签到,获得积分10
7秒前
7秒前
7秒前
7秒前
情怀应助安详的一曲采纳,获得10
8秒前
星辰大海应助大翟采纳,获得10
8秒前
呆萌幻丝完成签到,获得积分10
10秒前
在查房完成签到,获得积分10
10秒前
在水一方应助咩咩兔采纳,获得10
10秒前
怕黑行恶完成签到,获得积分10
10秒前
完美世界应助IKUN采纳,获得10
11秒前
Zq完成签到,获得积分10
11秒前
11秒前
12秒前
小汤发布了新的文献求助10
12秒前
科目三应助呆萌的正豪采纳,获得10
12秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Residual Stress Measurement by X-Ray Diffraction, 2003 Edition HS-784/2003 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3947832
求助须知:如何正确求助?哪些是违规求助? 3493055
关于积分的说明 11067931
捐赠科研通 3223849
什么是DOI,文献DOI怎么找? 1781878
邀请新用户注册赠送积分活动 866664
科研通“疑难数据库(出版商)”最低求助积分说明 800376