亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Identifying infected patients using semi-supervised and transfer learning

人工智能 布里氏评分 机器学习 学习迁移 金标准(测试) 深度学习 计算机科学 试验装置 接收机工作特性 图表 医学 统计 数学 内科学
作者
Fereshteh S. Bashiri,John Caskey,Anoop Mayampurath,Nicole Dussault,Jay Dumanian,Sivasubramanium V. Bhavani,Kyle A. Carey,Emily Gilbert,Christopher Winslow,Nirav Shah,Dana P. Edelson,Majid Afshar,Matthew M. Churpek
出处
期刊:Journal of the American Medical Informatics Association [Oxford University Press]
卷期号:29 (10): 1696-1704 被引量:5
标识
DOI:10.1093/jamia/ocac109
摘要

Abstract Objectives Early identification of infection improves outcomes, but developing models for early identification requires determining infection status with manual chart review, limiting sample size. Therefore, we aimed to compare semi-supervised and transfer learning algorithms with algorithms based solely on manual chart review for identifying infection in hospitalized patients. Materials and Methods This multicenter retrospective study of admissions to 6 hospitals included “gold-standard” labels of infection from manual chart review and “silver-standard” labels from nonchart-reviewed patients using the Sepsis-3 infection criteria based on antibiotic and culture orders. “Gold-standard” labeled admissions were randomly allocated to training (70%) and testing (30%) datasets. Using patient characteristics, vital signs, and laboratory data from the first 24 hours of admission, we derived deep learning and non-deep learning models using transfer learning and semi-supervised methods. Performance was compared in the gold-standard test set using discrimination and calibration metrics. Results The study comprised 432 965 admissions, of which 2724 underwent chart review. In the test set, deep learning and non-deep learning approaches had similar discrimination (area under the receiver operating characteristic curve of 0.82). Semi-supervised and transfer learning approaches did not improve discrimination over models fit using only silver- or gold-standard data. Transfer learning had the best calibration (unreliability index P value: .997, Brier score: 0.173), followed by self-learning gradient boosted machine (P value: .67, Brier score: 0.170). Discussion Deep learning and non-deep learning models performed similarly for identifying infection, as did models developed using Sepsis-3 and manual chart review labels. Conclusion In a multicenter study of almost 3000 chart-reviewed patients, semi-supervised and transfer learning models showed similar performance for model discrimination as baseline XGBoost, while transfer learning improved calibration.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
黑摄会阿Fay完成签到,获得积分10
9秒前
15秒前
starry发布了新的文献求助30
21秒前
YifanWang应助科研通管家采纳,获得20
51秒前
YifanWang应助科研通管家采纳,获得10
51秒前
YifanWang应助科研通管家采纳,获得10
51秒前
红橙黄绿蓝靛紫111完成签到,获得积分10
57秒前
kuoping完成签到,获得积分0
1分钟前
Wei发布了新的文献求助50
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
YifanWang应助科研通管家采纳,获得10
2分钟前
zsmj23完成签到 ,获得积分0
3分钟前
NexusExplorer应助liudy采纳,获得10
3分钟前
彭于晏应助andrew12399采纳,获得10
3分钟前
3分钟前
liudy完成签到,获得积分10
3分钟前
liudy发布了新的文献求助10
3分钟前
3分钟前
andrew12399完成签到,获得积分10
3分钟前
andrew12399发布了新的文献求助10
3分钟前
Eatanicecube完成签到,获得积分10
3分钟前
af完成签到,获得积分10
3分钟前
针真滴完成签到 ,获得积分10
4分钟前
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
FashionBoy应助科研通管家采纳,获得10
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
YifanWang应助科研通管家采纳,获得20
4分钟前
科研通AI5应助安详宛筠采纳,获得10
5分钟前
5分钟前
小燕子完成签到 ,获得积分10
5分钟前
安详宛筠发布了新的文献求助10
5分钟前
apt完成签到 ,获得积分10
5分钟前
balko完成签到,获得积分10
6分钟前
6分钟前
ST发布了新的文献求助10
6分钟前
局内人完成签到,获得积分10
6分钟前
YifanWang应助科研通管家采纳,获得20
6分钟前
YifanWang应助科研通管家采纳,获得20
6分钟前
高分求助中
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
哈工大泛函分析教案课件、“72小时速成泛函分析:从入门到入土.PDF”等 660
Comparing natural with chemical additive production 500
The Leucovorin Guide for Parents: Understanding Autism’s Folate 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.) 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5211132
求助须知:如何正确求助?哪些是违规求助? 4387741
关于积分的说明 13663104
捐赠科研通 4247756
什么是DOI,文献DOI怎么找? 2330530
邀请新用户注册赠送积分活动 1328265
关于科研通互助平台的介绍 1281116