Hybrid machine learning models for prediction of daily dissolved oxygen

水准点(测量) 人工神经网络 平均绝对百分比误差 平均绝对误差 灵敏度(控制系统) 计算机科学 人口 机器学习 人工智能 近似误差 均方预测误差 均方误差 统计 预测建模 数学 工程类 地质学 社会学 人口学 电子工程 大地测量学
作者
Aliasghar Azma,Yakun Liu,Masoumeh Azma,Mohsen Saadat,Di Zhang,Jinwoo Cho,Shahabaldin Rezania
出处
期刊:Journal of water process engineering [Elsevier BV]
卷期号:54: 103957-103957 被引量:22
标识
DOI:10.1016/j.jwpe.2023.103957
摘要

Measuring water quality parameters is a significant step in many hydrological assessments. Dissolved oxygen (DO) is one of these parameters that is an indicator of water quality. Hence, this study offers two novel intelligent models, i.e., the integration of biogeography-based optimization (BBO) and atom search optimization (ASO) with artificial neural network (ANN), to predict the daily DO. These methods are comparatively assessed and validated against several benchmark techniques. Five-year (2014–2019) water quality data of a USGS station called Rock Creek (Station number 01648010) is used for implementing the proposed model. In this sense, the models first learn the DO behavior using 80 % of the data and they then predict the DO for the fifth year. As per the performed sensitivity analysis, the water temperature was selected as the most effective parameter in the DO prediction. Trying different population sizes determined an optimal configuration of the employed models and assessing the accuracy of the results revealed that the proposed models can nicely perceive the DO pattern with around 4 % mean absolute percentage error (MAPE) and 97.5 % correlation. In the testing phase, the BBO-ANN and ASO-ANN models predicted the DO of the fifth year with MAPEs 2.3848 and 2.5170 %, and correlations of 0.99186 and 0.99135, respectively. Moreover, the suggested BBO-ANN and ASO-ANN outperformed some similar hybrids from the existing literature. Lastly, an explicit formula is derived from the BBO-ANN for convenient prediction of the DO.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
TCB发布了新的文献求助10
刚刚
Yen发布了新的文献求助10
刚刚
007完成签到 ,获得积分10
刚刚
123完成签到,获得积分10
2秒前
3秒前
打打应助文静的信封采纳,获得10
4秒前
冷眼观潮完成签到,获得积分10
4秒前
chemhub完成签到,获得积分10
6秒前
7秒前
7秒前
faiting完成签到,获得积分10
7秒前
bkagyin应助xb采纳,获得10
8秒前
yilin发布了新的文献求助10
8秒前
盏茶轻抿完成签到,获得积分10
10秒前
乔乔兔发布了新的文献求助10
10秒前
11秒前
斯文的小旋风应助Katherine采纳,获得20
12秒前
12秒前
12秒前
13秒前
一往而深发布了新的文献求助10
17秒前
18秒前
酷波er应助乔乔兔采纳,获得10
19秒前
天御雪完成签到,获得积分10
19秒前
20秒前
橘橘橘子皮完成签到 ,获得积分10
21秒前
orixero应助lnd采纳,获得10
21秒前
22秒前
CM发布了新的文献求助30
22秒前
领导范儿应助lili采纳,获得30
23秒前
24秒前
liu完成签到,获得积分10
24秒前
烟花应助LEETHEO采纳,获得10
24秒前
快准对完成签到 ,获得积分10
24秒前
Alex完成签到,获得积分10
24秒前
25秒前
乔乔兔完成签到,获得积分10
25秒前
25秒前
28秒前
28秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3841815
求助须知:如何正确求助?哪些是违规求助? 3383873
关于积分的说明 10531596
捐赠科研通 3103984
什么是DOI,文献DOI怎么找? 1709463
邀请新用户注册赠送积分活动 823263
科研通“疑难数据库(出版商)”最低求助积分说明 773868