Temporal-spatial convolutional residual network for decoding attempted movement related EEG signals of subjects with spinal cord injury

计算机科学 卷积神经网络 残余物 超参数 脑-机接口 人工智能 脑电图 模式识别(心理学) 解码方法 特征提取 算法 心理学 精神科
作者
Hamed Mirzabagherian,Mohammad Bagher Menhaj,Amir Abolfazl Suratgar,Nasibeh Talebi,Mohsen Sardari,Atena Sajedin
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:164: 107159-107159 被引量:2
标识
DOI:10.1016/j.compbiomed.2023.107159
摘要

Brain Computer Interface (BCI) offers a promising approach to restoring hand functionality for people with cervical spinal cord injury (SCI). A reliable classification of brain activities based on appropriate flexibility in feature extraction could enhance BCI systems performance. In the present study, based on convolutional layers with temporal-spatial, Separable and Depthwise structures, we develop Temporal-Spatial Convolutional Residual Network)TSCR-Net(and Temporal-Spatial Convolutional Iterative Residual Network)TSCIR-Net(structures to classify electroencephalogram (EEG) signals. Using EEG signals in five different hand movement classes of SCI people, we compare the effectiveness of TSCIR-Net and TSCR-Net models with some competitive methods. We use the bayesian hyperparameter optimization algorithm to tune the hyperparameters of compact convolutional neural networks. In order to show the high generalizability of the proposed models, we compare the results of the models in different frequency ranges. Our proposed models decoded distinctive characteristics of different movement efforts and obtained higher classification accuracy than previous deep neural networks. Our findings indicate that TSCIR-Net and TSCR-Net models fulfills a better classification accuracy of 71.11%, and 64.55% for EEG_All and 57.74%, and 67.87% for EEG_Low frequency data sets than the compared methods in the literature.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
kentomomota发布了新的文献求助20
1秒前
zww发布了新的文献求助60
2秒前
爆米花应助小丸子采纳,获得10
2秒前
Lucides完成签到,获得积分10
2秒前
3秒前
科研通AI5应助xyqnb采纳,获得10
3秒前
3秒前
阿佳发布了新的文献求助10
5秒前
刀123完成签到,获得积分10
6秒前
toxrs完成签到,获得积分10
6秒前
8秒前
共享精神应助西瓜采纳,获得10
9秒前
清脆野狼发布了新的文献求助10
9秒前
11秒前
11秒前
端庄的冰之完成签到,获得积分10
11秒前
大个应助Ling采纳,获得10
12秒前
shengyou发布了新的文献求助10
13秒前
14秒前
风和日丽完成签到,获得积分10
15秒前
YXY完成签到,获得积分10
16秒前
kentomomota完成签到 ,获得积分10
17秒前
中心湖小海棠完成签到,获得积分10
17秒前
18秒前
天天快乐应助清脆野狼采纳,获得10
18秒前
cheng发布了新的文献求助10
21秒前
23秒前
23秒前
王来敏完成签到,获得积分10
24秒前
纯真的雨完成签到 ,获得积分10
25秒前
back you up应助丑陋的名字采纳,获得30
26秒前
研友_VZG7GZ应助balrog采纳,获得10
26秒前
27秒前
30秒前
32秒前
32秒前
隐形曼青应助雪白机器猫采纳,获得10
33秒前
樊铸海发布了新的文献求助10
33秒前
fdwang完成签到 ,获得积分10
34秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791256
求助须知:如何正确求助?哪些是违规求助? 3335799
关于积分的说明 10277179
捐赠科研通 3052449
什么是DOI,文献DOI怎么找? 1675134
邀请新用户注册赠送积分活动 803125
科研通“疑难数据库(出版商)”最低求助积分说明 761096