Ensembling machine learning models to identify forest fire-susceptible zones in Northeast India

随机森林 多重共线性 地理信息系统 地理 支持向量机 环境科学 回归分析 地图学 计算机科学 机器学习
作者
Mriganka Shekhar Sarkar,Bishal Kumar Majhi,Bhawna Pathak,Tridipa Biswas,Soumik Mahapatra,Devendra Kumar,Indra D. Bhatt,Jagadish C. Kuniyal,Sunil Nautiyal
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:81: 102598-102598 被引量:15
标识
DOI:10.1016/j.ecoinf.2024.102598
摘要

Forest fires pose significant challenges by disrupting ecological balance, impacting socio-economic harmony, and raising global concerns. North-East India (NEI) experiences high incidences of forest fires, making it crucial to implement suitable management measures considering the driving forces influencing fire likelihood. This study aims to identify forest fire susceptibility zones in NEI by using five machine-learning modeling approaches, Boosted Regression Tree (BRT), Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Tree (CART), and Multivariate Adaptive Regression Splines (MARS), and an ensemble method. Forest fire data from the SNPP – VIIRS sensor (2018–2019) were rectified for spatial autocorrelation. Thirty-two responsive predictor variables related to topographic, climatic, biophysical, and anthropogenic factors were used as model inputs and multicollinearity analysis was performed to eliminate highly correlated predictors. Results indicate that the southern and southeastern regions of NEI, characterized by ample solar radiation, enhanced vegetation index, high human population density, and jhum cultivation, contribute significantly to higher susceptibility to forest fires. The Random Forest model performs best among the models employed, achieving an AUC value of 0.87. The ensemble susceptibility map, binarized based on AUC weighting, covers 29.54% of the total geographic area and 44.42% of the forested area of NEI. The vulnerability levels vary among states, with Mizoram showing the highest susceptibility at 89.27% and Sikkim exhibiting the lowest vulnerability at only 0.49% of their respective geographic areas. This map provides valuable insights for implementing effective forest fire management plans in the region. Moreover, the methodology utilized in this study, which incorporates satellite imagery, GIS techniques, and improved modeling techniques, can be replicated in any geographical region worldwide to facilitate effective forest fire management at a regional to large scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粗犷的山水完成签到,获得积分20
1秒前
123发布了新的文献求助10
2秒前
儒雅路人完成签到,获得积分10
2秒前
阿冰发布了新的文献求助10
3秒前
sota完成签到,获得积分10
5秒前
acffo发布了新的文献求助10
6秒前
7秒前
xy完成签到,获得积分10
8秒前
温柔的蛋挞完成签到,获得积分10
8秒前
min完成签到,获得积分10
10秒前
L1230发布了新的文献求助10
10秒前
Ava应助可可采纳,获得10
11秒前
zhou完成签到,获得积分10
12秒前
魏煜佳发布了新的文献求助10
12秒前
李健的小迷弟应助zhan采纳,获得10
12秒前
小下发布了新的文献求助40
14秒前
小杜同学完成签到,获得积分20
16秒前
16秒前
zzz完成签到,获得积分10
17秒前
小狗味儿发布了新的文献求助10
18秒前
飞翔的荷兰人完成签到,获得积分10
18秒前
舒畅发布了新的文献求助10
19秒前
阿冰完成签到,获得积分10
20秒前
Alan完成签到 ,获得积分10
21秒前
22秒前
felix发布了新的文献求助30
22秒前
23秒前
明亮笑旋完成签到 ,获得积分10
23秒前
23秒前
大模型应助矮小的万声采纳,获得10
23秒前
24秒前
26秒前
27秒前
hindbind完成签到,获得积分10
27秒前
田様应助可可采纳,获得10
28秒前
Hqing完成签到 ,获得积分10
28秒前
28秒前
明理冬瓜完成签到,获得积分10
28秒前
30秒前
Hello应助半城烟火采纳,获得10
30秒前
高分求助中
ФОРМИРОВАНИЕ АО "МЕЖДУНАРОДНАЯ КНИГА" КАК ВАЖНЕЙШЕЙ СИСТЕМЫ ОТЕЧЕСТВЕННОГО КНИГОРАСПРОСТРАНЕНИЯ 3000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906146
求助须知:如何正确求助?哪些是违规求助? 3451756
关于积分的说明 10866274
捐赠科研通 3177171
什么是DOI,文献DOI怎么找? 1755239
邀请新用户注册赠送积分活动 848710
科研通“疑难数据库(出版商)”最低求助积分说明 791226