Ensembling machine learning models to identify forest fire-susceptible zones in Northeast India

随机森林 多重共线性 地理信息系统 地理 支持向量机 环境科学 回归分析 地图学 计算机科学 机器学习
作者
Mriganka Shekhar Sarkar,Bishal Kumar Majhi,Bhawna Pathak,Tridipa Biswas,Soumik Mahapatra,Devendra Kumar,Indra D. Bhatt,Jagadish C. Kuniyal,Sunil Nautiyal
出处
期刊:Ecological Informatics [Elsevier BV]
卷期号:81: 102598-102598 被引量:15
标识
DOI:10.1016/j.ecoinf.2024.102598
摘要

Forest fires pose significant challenges by disrupting ecological balance, impacting socio-economic harmony, and raising global concerns. North-East India (NEI) experiences high incidences of forest fires, making it crucial to implement suitable management measures considering the driving forces influencing fire likelihood. This study aims to identify forest fire susceptibility zones in NEI by using five machine-learning modeling approaches, Boosted Regression Tree (BRT), Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Tree (CART), and Multivariate Adaptive Regression Splines (MARS), and an ensemble method. Forest fire data from the SNPP – VIIRS sensor (2018–2019) were rectified for spatial autocorrelation. Thirty-two responsive predictor variables related to topographic, climatic, biophysical, and anthropogenic factors were used as model inputs and multicollinearity analysis was performed to eliminate highly correlated predictors. Results indicate that the southern and southeastern regions of NEI, characterized by ample solar radiation, enhanced vegetation index, high human population density, and jhum cultivation, contribute significantly to higher susceptibility to forest fires. The Random Forest model performs best among the models employed, achieving an AUC value of 0.87. The ensemble susceptibility map, binarized based on AUC weighting, covers 29.54% of the total geographic area and 44.42% of the forested area of NEI. The vulnerability levels vary among states, with Mizoram showing the highest susceptibility at 89.27% and Sikkim exhibiting the lowest vulnerability at only 0.49% of their respective geographic areas. This map provides valuable insights for implementing effective forest fire management plans in the region. Moreover, the methodology utilized in this study, which incorporates satellite imagery, GIS techniques, and improved modeling techniques, can be replicated in any geographical region worldwide to facilitate effective forest fire management at a regional to large scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
NN完成签到,获得积分10
2秒前
宛海完成签到,获得积分10
4秒前
科研通AI2S应助姑姑卡采纳,获得10
10秒前
科研通AI2S应助姑姑卡采纳,获得10
10秒前
月亮完成签到 ,获得积分10
11秒前
zxt完成签到,获得积分10
13秒前
久一点完成签到 ,获得积分10
14秒前
安安完成签到,获得积分10
15秒前
15秒前
李健的小迷弟应助qianqian采纳,获得20
17秒前
领导范儿应助安安采纳,获得10
19秒前
细心夏槐完成签到 ,获得积分10
20秒前
24秒前
小趴菜完成签到,获得积分10
25秒前
JJy发布了新的文献求助10
29秒前
小二郎应助科研通管家采纳,获得10
36秒前
Yc应助科研通管家采纳,获得10
36秒前
彭于晏应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
英俊的铭应助科研通管家采纳,获得10
36秒前
领导范儿应助科研通管家采纳,获得10
36秒前
打打应助科研通管家采纳,获得10
36秒前
打打应助科研通管家采纳,获得10
36秒前
科研通AI5应助科研通管家采纳,获得10
36秒前
36秒前
从容傲柏完成签到,获得积分10
37秒前
清歌发布了新的文献求助10
43秒前
慕若涵冰完成签到,获得积分10
45秒前
58秒前
情怀应助我不是阿呆采纳,获得10
58秒前
温暖大米完成签到 ,获得积分10
59秒前
可爱的函函应助JJy采纳,获得30
1分钟前
安详的惜梦应助abcdefg采纳,获得10
1分钟前
乐乐应助爱学习的小木采纳,获得10
1分钟前
深情安青应助尊敬乐蕊采纳,获得10
1分钟前
鹏虫虫完成签到 ,获得积分10
1分钟前
跟屁虫完成签到,获得积分10
1分钟前
1分钟前
AJJACKY完成签到,获得积分10
1分钟前
fcgcgfcgf发布了新的文献求助10
1分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777289
求助须知:如何正确求助?哪些是违规求助? 3322579
关于积分的说明 10210765
捐赠科研通 3037943
什么是DOI,文献DOI怎么找? 1666984
邀请新用户注册赠送积分活动 797884
科研通“疑难数据库(出版商)”最低求助积分说明 758061