A novel high-performance MXene-doped graphene pressure sensor

石墨烯 材料科学 压力传感器 兴奋剂 光电子学 纳米技术 工程类 机械工程
作者
Chenwang Mo,Zehao Tian,Debo Wang
出处
期刊:IEEE Sensors Journal [IEEE Sensors Council]
卷期号:24 (9): 14059-14067 被引量:6
标识
DOI:10.1109/jsen.2024.3382107
摘要

Most of the previous graphene pressure sensors generally have problems such as poor measurement range, insufficient sensing points, and complex fabrication processes. In order to enhance the performance of graphene pressure sensors with low cost and easy preparation, a novel MXene-doped graphene pressure sensor is designed with double-layer structure in this work. The doped MXene undergoes charge transfer with graphene, inducing scattering of graphene carriers. This process leads to a decrease in the concentration and mobility of graphene carriers, consequently increasing the resistivity of graphene which in turn increases its sensitivity. The MXene-doped graphene pressure sensor is fabricated with a simple and inexpensive Laser-Engraved Graphene-MXene film technology. The morphological features and microstructure of MXene-doped graphene are characterized with SEM, XRD and Raman spectrum tests. This MXene-doped graphene pressure sensor can detect the pressure in the range of 0~10 kPa. Compared with previous graphene pressure sensors, the results indicate a significant improvement in sensitivity (2.13 kPa -1 , 0~2.48 kPa; 0.23 kPa -1 , 2.48~10 kPa). Simultaneously, the sensor exhibits good hysteresis (1.51%) and excellent repeatability (1.69%). The response and recovery times are both less than 13 ms. The influence of the bending radius of a PET substrate on sensor performance has been studied. The smaller the bending radius of the PET substrate, the higher the sensor resistance. Additionally, this sensor has good long-term stability, which enhances its reliability across industrial automation, healthcare and smart wearables.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助COIN_77采纳,获得10
1秒前
will发布了新的文献求助10
3秒前
呆萌的若颜应助Epiphany采纳,获得20
3秒前
CipherSage应助ELITOmiko采纳,获得10
3秒前
大气早晨发布了新的文献求助10
3秒前
温医第一打野完成签到,获得积分10
4秒前
4秒前
4秒前
斯文败类应助小明采纳,获得10
4秒前
Mottri完成签到,获得积分10
4秒前
5秒前
饱满剑封发布了新的文献求助30
5秒前
今后应助文艺清涟采纳,获得30
5秒前
vivianfou发布了新的文献求助10
7秒前
俊逸凌兰发布了新的文献求助10
7秒前
东耦应助whq531608采纳,获得10
7秒前
8秒前
hongci13发布了新的文献求助10
8秒前
bkagyin应助AA采纳,获得10
8秒前
8秒前
CodeCraft应助大气早晨采纳,获得10
9秒前
9秒前
laly发布了新的文献求助10
10秒前
ELITOmiko完成签到,获得积分10
11秒前
关山月发布了新的文献求助10
11秒前
CipherSage应助科研通管家采纳,获得10
11秒前
星辰大海应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
11秒前
11秒前
FashionBoy应助科研通管家采纳,获得10
11秒前
11秒前
柯亦云应助科研通管家采纳,获得10
11秒前
Hayat应助科研通管家采纳,获得10
11秒前
12秒前
刘亚虓发布了新的文献求助10
12秒前
LJL发布了新的文献求助10
13秒前
Yayaya发布了新的文献求助10
13秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 500
Maritime Applications of Prolonged Casualty Care: Drowning and Hypothermia on an Amphibious Warship 500
Comparison analysis of Apple face ID in iPad Pro 13” with first use of metasurfaces for diffraction vs. iPhone 16 Pro 500
Towards a $2B optical metasurfaces opportunity by 2029: a cornerstone for augmented reality, an incremental innovation for imaging (YINTR24441) 500
Materials for Green Hydrogen Production 2026-2036: Technologies, Players, Forecasts 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4055959
求助须知:如何正确求助?哪些是违规求助? 3594142
关于积分的说明 11419203
捐赠科研通 3320073
什么是DOI,文献DOI怎么找? 1825570
邀请新用户注册赠送积分活动 896603
科研通“疑难数据库(出版商)”最低求助积分说明 817900