Optimizing Traffic Sign Detection and Recognition by Using Deep Learning

交通标志识别 深度学习 计算机科学 符号(数学) 人工智能 交通标志 机器学习 数学 数学分析
作者
Surekha Yalamanchili,Koteswararao Kodepogu,Vijaya Bharathi Manjeti,Divya Mareedu,Anusha Madireddy,Jaswanth Mannem,Pawan Kumar Kancharla
出处
期刊:International journal of transport development and integration [WIT Press]
卷期号:8 (1): 131-139 被引量:2
标识
DOI:10.18280/ijtdi.080112
摘要

Enhancing performance standards by judiciously fusing established methods with innovative strategies.This paper aims to combine the existing YOLOv5 algorithm, which is well-known for its object identification abilities, with new models, such as the Autoencoder-CNN (Convolutional Neural Network), Autoencoder-LSTM (Long Short-Term Memory), and Recurrent Neural Network (RNN) frameworks, in order to improve its performance.Through combining these disparate methods, the study seeks to use each of their unique advantages, ultimately resulting in a thorough comparison study that reveals their separate effects on precision and productivity.This methodical assessment, characterized by rigorous optimization and careful testing, not only improves traffic sign recognition systems' accuracy but also reveals useful connections between the suggested and known methods.The main goal of this endeavor is to unravel how these seemingly unrelated components, when brought together, can potentially usher in a new age of higher performance standards.This study aims to pave the way for the development of more sophisticated, flexible, and well-tuned traffic sign detection and identification systems by bridging the gap between the established and the cutting edge.The ramifications of this work encompass a wide range of real-world applications.Robust optimization and experimentation not only improve traffic sign recognition systems' accuracy but also reveal useful connections between the suggested and proven methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
噼里啪啦发布了新的文献求助30
1秒前
1秒前
windy钟声完成签到,获得积分10
1秒前
1秒前
1秒前
俏皮的尔竹完成签到,获得积分10
1秒前
飞云发布了新的文献求助10
1秒前
西宁完成签到 ,获得积分10
2秒前
小蘑菇应助花生土豆采纳,获得10
2秒前
3秒前
3秒前
3秒前
王志霞发布了新的文献求助10
5秒前
勤奋隶应助无奈世立采纳,获得10
5秒前
hbgcld发布了新的文献求助30
5秒前
5秒前
xiaoxue完成签到,获得积分20
5秒前
5秒前
niuniuniu驳回了iNk应助
5秒前
6秒前
斯文败类应助xiaoyu采纳,获得10
7秒前
米米兔完成签到,获得积分10
8秒前
8秒前
xiaoxue发布了新的文献求助10
8秒前
8秒前
choudandan4401完成签到,获得积分10
9秒前
9秒前
任性的傲柏完成签到,获得积分10
9秒前
10秒前
支问凝发布了新的文献求助10
10秒前
共勉完成签到,获得积分10
10秒前
wtg发布了新的文献求助10
10秒前
我是老大应助ncjdoi采纳,获得10
11秒前
ayin完成签到,获得积分20
11秒前
11秒前
12秒前
13秒前
Lucas应助hbgcld采纳,获得10
13秒前
是毛果芸香碱完成签到,获得积分10
13秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Physiological roles of selenoprotein H in age-related trace element regulation and selenoprotein expression in mice 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Deep Neural Networks in a Mathematical Framework 200
Orion Flight Test-1 Thermal Protection System Instrumentation 200
New Syntheses with Carbon Monoxide 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3834749
求助须知:如何正确求助?哪些是违规求助? 3377312
关于积分的说明 10497565
捐赠科研通 3096727
什么是DOI,文献DOI怎么找? 1705124
邀请新用户注册赠送积分活动 820484
科研通“疑难数据库(出版商)”最低求助积分说明 772055