Dynamic retrieval of events and associations from memory: An integrated account of item and associative recognition.

结合属性 内容寻址存储器 计算机科学 背景(考古学) 识别记忆 特征(语言学) 集合(抽象数据类型) 模式识别(心理学) 人工智能 心理学 认知 人工神经网络 数学 神经科学 哲学 古生物学 生物 程序设计语言 纯数学 语言学
作者
Gregory E. Cox
出处
期刊:Psychological Review [American Psychological Association]
标识
DOI:10.1037/rev0000486
摘要

Memory theories distinguish between item and associative information, which are engaged by different tasks: item recognition uses item information to decide whether an event occurred in a particular context; associative recognition uses associative information to decide whether two events occurred together. Associative recognition is slower and less accurate than item recognition, suggesting that item and associative information may be represented in different forms and retrieved using different processes. Instead, I show how a dynamic model (Cox & Criss, 2020; Cox & Shiffrin, 2017) accounts for accuracy and response time distributions in both item and associative recognition with the same set of representations and processes. Item and associative information are both represented as vectors of features. Item and associative recognition both depend on comparing traces in memory with probes of memory in which item and associative features gradually accumulate. Associative features are slower to accumulate, but largely because they emerge from conjunctions of already-accumulated item features. I apply the model to data from 453 participants, each of whom performed an item and performed associative recognition following identical study conditions (Cox et al., 2018). Comparisons among restricted versions of the model show that its account of associative feature formation, coupled with limits on the rate at which features accumulate from multiple items, explains how and why the dynamics of associative recognition differ from those of item recognition even while both tasks rely on the same underlying representations. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
汉堡包应助可露丽采纳,获得10
2秒前
六六六发布了新的文献求助10
2秒前
2秒前
Jennifer应助腌黄瓜女士采纳,获得10
2秒前
汀汀发布了新的文献求助10
4秒前
Melody发布了新的文献求助10
5秒前
wangyr11发布了新的文献求助10
5秒前
明哈哈发布了新的文献求助10
6秒前
情怀应助六六六采纳,获得10
8秒前
传奇3应助Wri采纳,获得10
8秒前
9秒前
11秒前
半糖糖发布了新的文献求助10
11秒前
bkagyin应助星途采纳,获得10
12秒前
yang发布了新的文献求助10
12秒前
科研通AI5应助或无情采纳,获得10
14秒前
14秒前
有魅力勒关注了科研通微信公众号
14秒前
hyt完成签到,获得积分10
14秒前
ding应助doudou采纳,获得30
15秒前
YT完成签到,获得积分10
15秒前
16秒前
18秒前
xia完成签到,获得积分10
18秒前
茶叙汤言完成签到,获得积分10
18秒前
19秒前
19秒前
可露丽发布了新的文献求助10
20秒前
pan发布了新的文献求助10
21秒前
乐乐应助热爱科研的刘采纳,获得10
21秒前
李爱国应助明哈哈采纳,获得10
21秒前
21秒前
ermu完成签到,获得积分10
22秒前
22秒前
23秒前
个性书翠应助hnwang98采纳,获得10
23秒前
lyx014发布了新的文献求助10
24秒前
26秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The direct observation of dislocations 200
Reference Guide for Dynamic Models of HVAC Equipment 200
A Treatise on Hydrostatics and Hydrodynamics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3836489
求助须知:如何正确求助?哪些是违规求助? 3378770
关于积分的说明 10506036
捐赠科研通 3098421
什么是DOI,文献DOI怎么找? 1706505
邀请新用户注册赠送积分活动 821062
科研通“疑难数据库(出版商)”最低求助积分说明 772431