Accelerating Optimal Synthesis of Atomically Thin MoS2: A Constrained Bayesian Optimization Guided Brachistochrone Approach

贝叶斯优化 贝叶斯概率 计算机科学 数学优化 材料科学 数学 人工智能
作者
Yujia Wang,Guoyan Li,Anand Natarajan,Sanjeev Mukerjee,Xiaoning Jin,Swastik Kar
出处
期刊:Advanced materials and technologies [Wiley]
卷期号:10 (5)
标识
DOI:10.1002/admt.202401465
摘要

Abstract A machine learning (ML) guided approach is presented for the accelerated optimization of chemical vapor deposition (CVD) synthesis of 2D materials toward the highest quality, starting from low‐quality or unsuccessful synthesis conditions. Using 26 sets of these synthesis conditions as the initial training dataset, our method systematically guides experimental synthesis towards optoelectronic‐grade monolayer MoS 2 flakes. A‐exciton linewidth (σ A ) as narrow as 38 meV could be achieved in 2D MoS 2 flakes after only an additional 35 trials (reflecting 15% of the full factorial design dataset for training purposes). In practical terms, this reflects a decrease of the possible experimental time to optimize the parameters from up to one year to about two months. This remarkable efficiency was achieved by formulating a constrained sequencing optimization problem solved via a combination of constraint learning and Bayesian Optimization with the narrowness of σ A as the single target metric. By employing graph‐based semi‐supervised learning with data acquired through a multi‐criteria sampling method, the constraint model effectively delineates and refines the feasible design space for monolayer flake production. Additionally, the Gaussian Process regression effectively captures the relationships between synthesis parameters and outcomes, offering high predictive capability along with a measure of prediction uncertainty. This method is scalable to a higher number of synthesis parameters and target metrics and is transferrable to other materials and types of reactors. This study envisions that this method will be fundamental for CVD and similar techniques in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
国子完成签到,获得积分10
刚刚
刚刚
清爽的曼易完成签到 ,获得积分10
1秒前
希望天下0贩的0应助OMIT采纳,获得10
1秒前
2滴水发布了新的文献求助10
2秒前
2秒前
2秒前
sssxylyy完成签到,获得积分10
2秒前
泱泱完成签到,获得积分10
3秒前
乐乐应助狂暴的蜗牛0713采纳,获得10
3秒前
小芋发布了新的文献求助20
3秒前
xielunwen发布了新的文献求助10
5秒前
852应助1203采纳,获得10
6秒前
10 g发布了新的文献求助10
6秒前
慕青应助nnn采纳,获得10
6秒前
7秒前
科研老兵发布了新的文献求助20
7秒前
7秒前
7秒前
8秒前
KK发布了新的文献求助10
9秒前
科研通AI6应助Regulus采纳,获得10
9秒前
9秒前
kingwill发布了新的文献求助10
9秒前
9秒前
蓝胖子完成签到,获得积分10
10秒前
无糖的问题完成签到,获得积分20
11秒前
wt发布了新的文献求助10
11秒前
Murmansk发布了新的文献求助10
11秒前
spike完成签到,获得积分10
11秒前
无极微光应助小芋采纳,获得20
12秒前
开心小猪发布了新的文献求助10
12秒前
星星发布了新的文献求助10
13秒前
余地完成签到,获得积分10
13秒前
如约发布了新的文献求助10
13秒前
14秒前
研友_Z3vemn完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
14秒前
充电宝应助平淡的雪卉采纳,获得10
15秒前
浮游应助夜星子采纳,获得10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5546683
求助须知:如何正确求助?哪些是违规求助? 4632489
关于积分的说明 14627325
捐赠科研通 4574069
什么是DOI,文献DOI怎么找? 2508092
邀请新用户注册赠送积分活动 1484663
关于科研通互助平台的介绍 1455826