An ensemble machine learning-based approach to predict cervical cancer using hybrid feature selection

随机森林 人工智能 阿达布思 支持向量机 机器学习 集成学习 朴素贝叶斯分类器 特征选择 计算机科学 Boosting(机器学习) 多层感知器 宫颈癌 过采样 逻辑回归 模式识别(心理学) 人工神经网络 癌症 医学 带宽(计算) 内科学 计算机网络
作者
Khandaker Mohammad Mohi Uddin,Abdullah Al Mamun,Anamika Chakrabarti,Rafid Mostafiz,Samrat Kumar Dey
出处
期刊:Neuroscience Informatics [Elsevier]
卷期号:4 (3): 100169-100169 被引量:2
标识
DOI:10.1016/j.neuri.2024.100169
摘要

Cervical cancer has recently emerged as the leading cause of premature death among women. Around 85% of cervical cancer cases occur in underdeveloped countries. There are several risk factors associated with cervical cancer. This study describes a novel predictive model that uses early screening and risk trends from individual health records to forecast cervical cancer patients' prognoses. This study uses machine learning classification techniques to investigate the risk factors for cervical cancer. Additionally, use the voting method to evaluate all models and select the most appropriate model. The dataset used in this study contains missing values and shows a significant imbalance. Thus, the Random Oversampling technique was used as a sampling method. We used Principal Component Analysis (PCA) and XGBoost feature selection techniques to determine the most important features. To predict the accuracy, we used several machine learning classifiers, including Support Vector Machines (SVM), Random Forest (RF), k-nearest Neighbors (KNN), Decision Trees (DT), Naive Bayes (NB), Logistic Regression (LR), AdaBoost (AdB), Gradient Boosting (GB), Multilayer Perceptron (MLP), and Nearest Centroid Classifier (NCC). To demonstrate the efficacy of the suggested model, a comparison of its accuracy, sensitivity, and specificity was performed. We used the Random Oversampling approach along with the Ensemble ML method, hard voting on RF and MLP, and achieved 99.19% accuracy. It is demonstrated that the ensemble ML classifier (hard voting) performs better at handling classification problems when features are decreased and the high-class imbalance problem is handled.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
韦涔发布了新的文献求助10
1秒前
zz完成签到,获得积分10
2秒前
花开富贵发布了新的文献求助20
2秒前
2秒前
股份回购完成签到,获得积分20
2秒前
午子诩发布了新的文献求助10
2秒前
qerw发布了新的文献求助10
3秒前
学术垃圾完成签到,获得积分10
3秒前
默默地读文献应助nn采纳,获得30
3秒前
橘哩咕噜应助sisi采纳,获得10
4秒前
水门发布了新的文献求助10
4秒前
隐形曼青应助hixx采纳,获得10
5秒前
曹年跃发布了新的文献求助10
5秒前
丘比特应助xmhxpz采纳,获得10
5秒前
慕青应助陆归云采纳,获得10
6秒前
7秒前
睡到人间煮饭时完成签到,获得积分10
7秒前
ECUST发布了新的文献求助10
9秒前
折镜完成签到,获得积分10
9秒前
10秒前
10秒前
Dye完成签到,获得积分10
11秒前
懦弱的冰岚完成签到 ,获得积分10
11秒前
坚定岂愈发布了新的文献求助30
11秒前
大不里士完成签到,获得积分10
11秒前
vanshaw.vs完成签到,获得积分10
12秒前
13秒前
汉堡包应助友好凌柏采纳,获得10
14秒前
CipherSage应助细心的语蓉采纳,获得30
14秒前
端庄冬日完成签到,获得积分10
14秒前
动漫大师发布了新的文献求助30
16秒前
Owen应助水门采纳,获得30
16秒前
曹年跃完成签到,获得积分10
16秒前
乔心发布了新的文献求助10
16秒前
傲娇千亦完成签到 ,获得积分10
18秒前
SC完成签到 ,获得积分10
19秒前
20秒前
香蕉觅云应助lll采纳,获得10
20秒前
21秒前
坚定岂愈完成签到,获得积分10
21秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3818911
求助须知:如何正确求助?哪些是违规求助? 3361969
关于积分的说明 10414920
捐赠科研通 3080306
什么是DOI,文献DOI怎么找? 1694052
邀请新用户注册赠送积分活动 814609
科研通“疑难数据库(出版商)”最低求助积分说明 768329