亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction of Metal Additively Manufactured Surface Roughness Using Deep Neural Network

表面粗糙度 人工神经网络 表面光洁度 平均绝对百分比误差 工艺工程 过程(计算) 质量(理念) 汽车工业 航空航天 产品(数学) 制造工程 机械工程 计算机科学 工程类 汽车工程 材料科学 人工智能 复合材料 数学 几何学 航空航天工程 哲学 操作系统 认识论
作者
Min Seop So,Gi Jeong Seo,Duck Bong Kim,Jong-Ho Shin
出处
期刊:Sensors [MDPI AG]
卷期号:22 (20): 7955-7955 被引量:29
标识
DOI:10.3390/s22207955
摘要

In recent years, manufacturing industries (e.g., medical, aerospace, and automobile) have been changing their manufacturing process to small-quantity batch production to flexibly cope with fluctuations in demand. Therefore, many companies are trying to produce products by introducing 3D printing technology into the manufacturing process. The 3D printing process is based on additive manufacturing (AM), which can fabricate complex shapes and reduce material waste and production time. Although AM has many advantages, its product quality is poor compared to conventional manufacturing systems. This study proposes a methodology to improve the quality of AM products based on data analysis. The targeted quality of AM is the surface roughness of the stacked wall. Surface roughness is one of the important quality indicators and can cause short product life and poor structure performance. To control the surface roughness, the resultant surface roughness needs to be predicted in advance depending on the process parameters. Various analysis methods such as data pre-processing and deep neural networks (DNN) combined with sensor data are used to predict surface roughness in the proposed methodology. The proposed methodology is applied to field data from operated wire + arc additive manufacturing (WAAM), and the analysis result shows its effectiveness, with a mean absolute percentage error (MAPE) of 1.93%.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
缓慢的誉发布了新的文献求助10
1秒前
充电宝应助_ban采纳,获得10
3秒前
小荷发布了新的文献求助10
4秒前
5秒前
lft361发布了新的文献求助10
10秒前
rita4616发布了新的文献求助10
18秒前
cyx完成签到 ,获得积分10
18秒前
木香007完成签到,获得积分10
19秒前
21秒前
爆米花应助jia采纳,获得10
25秒前
小葛完成签到,获得积分10
28秒前
30秒前
32秒前
baibai发布了新的文献求助10
32秒前
32秒前
ceeray23发布了新的文献求助20
35秒前
38秒前
39秒前
jia完成签到,获得积分10
41秒前
Murphy完成签到,获得积分10
43秒前
jia发布了新的文献求助10
45秒前
_ban发布了新的文献求助10
45秒前
JamesPei应助ceeray23采纳,获得20
45秒前
烟花应助zzk采纳,获得10
48秒前
淡淡宇宇宝宝完成签到,获得积分10
53秒前
裘青易发布了新的文献求助60
59秒前
Sherry完成签到 ,获得积分10
1分钟前
捏个小雪团完成签到 ,获得积分10
1分钟前
王欣瑶完成签到 ,获得积分10
1分钟前
每天我都睡得好完成签到 ,获得积分10
1分钟前
zzz发布了新的文献求助10
1分钟前
17784158937应助shinan采纳,获得10
1分钟前
1分钟前
Crisp完成签到 ,获得积分10
1分钟前
GingerF应助科研通管家采纳,获得10
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
科研通AI2S应助科研通管家采纳,获得30
1分钟前
GingerF应助科研通管家采纳,获得50
1分钟前
1分钟前
钱都来发布了新的文献求助10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549005
求助须知:如何正确求助?哪些是违规求助? 4634424
关于积分的说明 14634601
捐赠科研通 4575807
什么是DOI,文献DOI怎么找? 2509289
邀请新用户注册赠送积分活动 1485270
关于科研通互助平台的介绍 1456366