计算机科学
学习迁移
卷积神经网络
人工智能
数量结构-活动关系
玻璃化转变
合成数据
人工神经网络
数据集
机器学习
深度学习
聚合物
材料科学
复合材料
作者
Igor V. Volgin,Pavel A. Batyr,Andrey Matseevich,Alexey Yu. Dobrovskiy,Maria V. Andreeva,Victor M. Nazarychev,Sergey V. Larin,M. Ya. Goĭkhman,Yury Vizilter,А.А. Аскадский,Sergey V. Lyulin
出处
期刊:ACS omega
[American Chemical Society]
日期:2022-11-17
卷期号:7 (48): 43678-43691
被引量:31
标识
DOI:10.1021/acsomega.2c04649
摘要
In the present work, we address the problem of utilizing machine learning (ML) methods to predict the thermal properties of polymers by establishing "structure-property" relationships. Having focused on a particular class of heterocyclic polymers, namely polyimides (PIs), we developed a graph convolutional neural network (GCNN), being one of the most promising tools for working with big data, to predict the PI glass transition temperature
科研通智能强力驱动
Strongly Powered by AbleSci AI