Advanced imaging for risk stratification for ventricular arrhythmias and sudden cardiac death

医学 心脏病学 内科学 心源性猝死 缺血性心肌病 射血分数 植入式心律转复除颤器 心脏成像 心脏磁共振成像 危险分层 正电子发射断层摄影术 室性心动过速 猝死 心肌病 磁共振成像 放射科 心力衰竭
作者
Eric Xie,Eric Sung,Elie Saad,Natalia A. Trayanova,Kathérine C. Wu,Jonathan Chrispin
出处
期刊:Frontiers in Cardiovascular Medicine [Frontiers Media]
卷期号:9 被引量:1
标识
DOI:10.3389/fcvm.2022.884767
摘要

Sudden cardiac death (SCD) is a leading cause of mortality, comprising approximately half of all deaths from cardiovascular disease. In the US, the majority of SCD (85%) occurs in patients with ischemic cardiomyopathy (ICM) and a subset in patients with non-ischemic cardiomyopathy (NICM), who tend to be younger and whose risk of mortality is less clearly delineated than in ischemic cardiomyopathies. The conventional means of SCD risk stratification has been the determination of the ejection fraction (EF), typically via echocardiography, which is currently a means of determining candidacy for primary prevention in the form of implantable cardiac defibrillators (ICDs). Advanced cardiac imaging methods such as cardiac magnetic resonance imaging (CMR), single-photon emission computerized tomography (SPECT) and positron emission tomography (PET), and computed tomography (CT) have emerged as promising and non-invasive means of risk stratification for sudden death through their characterization of the underlying myocardial substrate that predisposes to SCD. Late gadolinium enhancement (LGE) on CMR detects myocardial scar, which can inform ICD decision-making. Overall scar burden, region-specific scar burden, and scar heterogeneity have all been studied in risk stratification. PET and SPECT are nuclear methods that determine myocardial viability and innervation, as well as inflammation. CT can be used for assessment of myocardial fat and its association with reentrant circuits. Emerging methodologies include the development of "virtual hearts" using complex electrophysiologic modeling derived from CMR to attempt to predict arrhythmic susceptibility. Recent developments have paired novel machine learning (ML) algorithms with established imaging techniques to improve predictive performance. The use of advanced imaging to augment risk stratification for sudden death is increasingly well-established and may soon have an expanded role in clinical decision-making. ML could help shift this paradigm further by advancing variable discovery and data analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
张旭完成签到,获得积分10
1秒前
Wb完成签到,获得积分10
3秒前
4秒前
shengsheng旭完成签到 ,获得积分10
4秒前
7秒前
liujianxin发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助30
11秒前
粗犷的谷秋完成签到 ,获得积分10
12秒前
神秘面筋男完成签到,获得积分10
15秒前
研友_VZG7GZ应助liujianxin采纳,获得10
16秒前
wensri完成签到,获得积分10
19秒前
丽丽完成签到 ,获得积分10
19秒前
dajiejie完成签到 ,获得积分10
20秒前
海盗船长完成签到,获得积分10
21秒前
Vlad完成签到,获得积分10
21秒前
影子芳香完成签到 ,获得积分10
22秒前
科研小郭完成签到,获得积分10
22秒前
Ttimer完成签到,获得积分10
23秒前
鸣鸣完成签到,获得积分10
30秒前
听寒完成签到,获得积分10
30秒前
凌凌子完成签到 ,获得积分10
33秒前
小新新完成签到 ,获得积分10
34秒前
35秒前
zoe完成签到,获得积分10
37秒前
37秒前
沙拉酱完成签到 ,获得积分10
37秒前
cuddly完成签到 ,获得积分10
38秒前
量子星尘发布了新的文献求助10
39秒前
安静诗霜完成签到 ,获得积分10
40秒前
liujianxin发布了新的文献求助10
40秒前
东风完成签到,获得积分10
42秒前
kevin_kong完成签到,获得积分10
45秒前
wangzihao1995完成签到,获得积分10
48秒前
现代的绿真完成签到,获得积分10
51秒前
十柒完成签到 ,获得积分10
52秒前
羽冰酒完成签到 ,获得积分10
53秒前
晴空万里完成签到 ,获得积分10
54秒前
高贵觅山完成签到,获得积分10
59秒前
59秒前
mojomars完成签到,获得积分0
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5079696
求助须知:如何正确求助?哪些是违规求助? 4297858
关于积分的说明 13388968
捐赠科研通 4121131
什么是DOI,文献DOI怎么找? 2257039
邀请新用户注册赠送积分活动 1261319
关于科研通互助平台的介绍 1195403