Interfacial engineering of hydrated vanadate to promote the fast and highly reversible H+/Zn2+ co-insertion processes for high-performance aqueous rechargeable batteries

材料科学 涂层 法拉第效率 阴极 溶解 化学工程 电化学 电解质 水溶液 钒酸盐 电池(电) 电极 纳米技术 物理化学 化学 冶金 工程类 功率(物理) 物理 量子力学
作者
Haijian Huang,Xue Xia,Juwei Yun,Cheng Huang,Deli Li,Bingbing Chen,Zeheng Yang,Weixin Zhang
出处
期刊:Energy Storage Materials [Elsevier]
卷期号:52: 473-484 被引量:62
标识
DOI:10.1016/j.ensm.2022.08.016
摘要

Layered hydrated vanadates have been regarded as promising cathode materials for Zn-ion batteries due to their high capacities. Nevertheless, the strong Coulombic interaction of Zn2+ with the host structure and the large de-solvation penalty of Zn2+, together with the vanadium dissolution and the poor electronic conductivity, significantly constrain their electrochemical performances and hinder their practical applications. Herein, this work reveals that the rational interfacial engineering based on phytic acid/polypyrrole coating can modulate the charge storage mechanism and effectively optimize the electrochemical performances of a typical hydrated vanadate cathode Ca0.24V2O5·H2O. Specifically, through in-situ and ex-situ characterizations backed with first-principle calculations, the coating strategy is found to offer a favorable interfacial environment, which intriguingly promotes the highly reversible H+/Zn2+ co-insertion processes. This, plus the beneficial effects of the coating layer in facilitating the de-solvation process of Zn2+ at the interface, boosts the ion diffusion kinetics of the coated cathode and gives rise to pseudocapacitive charge storage behaviors. In addition, the coating layer protects the cathode against dissolution in the electrolyte and promotes the electronic conduction, which collectively lead to enhanced rate and cycling performances. Accordingly, this study suggests that the interfacial environment is of vital importance in influencing the charge storage mechanisms and electrochemical performances of hydrated vanadate cathode materials, which indicates that the rational interfacial engineering may offer an avenue to further optimizing the performances of vanadium-based and even other Zn-ion battery cathode materials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽的悒完成签到 ,获得积分10
刚刚
刚刚
刚刚
领导范儿应助刻苦成风采纳,获得10
1秒前
1秒前
传奇3应助shineshine采纳,获得10
1秒前
1秒前
1秒前
可不发布了新的文献求助10
1秒前
机智傲霜完成签到,获得积分20
2秒前
2秒前
上官若男应助蛋妞儿采纳,获得10
3秒前
3秒前
3秒前
3秒前
3秒前
Emanon发布了新的文献求助10
3秒前
烟花应助Wmhan采纳,获得30
3秒前
Jacobsens发布了新的文献求助20
3秒前
不吃香菜发布了新的文献求助10
4秒前
屁王完成签到,获得积分10
4秒前
赘婿应助呼呼采纳,获得10
4秒前
Marshall发布了新的文献求助10
5秒前
oowt完成签到,获得积分10
5秒前
王云霞发布了新的文献求助10
6秒前
Cristina2024完成签到,获得积分10
6秒前
甜美雁梅发布了新的文献求助20
6秒前
小王姐姐发布了新的文献求助10
6秒前
7秒前
称心的灵枫完成签到,获得积分10
7秒前
研友_VZG7GZ应助直率的冰海采纳,获得10
7秒前
大模型应助蜗牛采纳,获得10
8秒前
ziwei完成签到,获得积分10
8秒前
王越完成签到,获得积分10
9秒前
zhangjianan完成签到,获得积分20
9秒前
邵大王发布了新的文献求助10
9秒前
9秒前
10秒前
xxfsx应助oowt采纳,获得10
10秒前
April发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1561
Treatise on Geochemistry 1500
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5514198
求助须知:如何正确求助?哪些是违规求助? 4608120
关于积分的说明 14508732
捐赠科研通 4543952
什么是DOI,文献DOI怎么找? 2489834
邀请新用户注册赠送积分活动 1471765
关于科研通互助平台的介绍 1443710