WavTrans: Synergizing Wavelet and Cross-Attention Transformer for Multi-contrast MRI Super-Resolution

计算机科学 人工智能 小波 残余物 模式识别(心理学) 保险丝(电气) 变压器 特征提取 卷积神经网络 计算机视觉 算法 量子力学 电气工程 物理 工程类 电压
作者
Guangyuan Li,Jun Lyu,Chengyan Wang,Qi Dou,Jing Qin
出处
期刊:Lecture Notes in Computer Science 卷期号:: 463-473 被引量:11
标识
DOI:10.1007/978-3-031-16446-0_44
摘要

Current multi-contrast MRI super-resolution (SR) methods often harness convolutional neural networks (CNNs) for feature extraction and fusion. However, existing models have some shortcomings that prohibit them from producing more satisfactory results. First, during the feature extraction, some high-frequency details in the images are lost, resulting in blurring boundaries in the reconstructed images, which may impede the following diagnosis and treatment. Second, the perceptual field of the convolution kernel is limited, making the networks difficult to capture long-range/non-local features. Third, most of these models are solely driven by training data, neglecting prior knowledge about the correlations among different contrasts, which, once well leveraged, will effectively enhance the performance with limited training data. In this paper, we propose a novel model to synergize wavelet transforms with a new cross-attention transformer to comprehensively tackle these challenges; we call it WavTrans. Specifically, we harness one-level wavelet transformation to obtain the detail and approximation coefficients in the reference contrast MR images (Ref). While the approximation coefficients are applied to compress the low-frequency global information, the detail coefficients are utilized to represent the high-frequency local structure and texture information. Then, we propose a new residual cross-attention swin transformer to extract and fuse extracted features to establish long-distance dependencies between features and maximize the restoration of high-frequency information in Tar. In addition, a multi-residual fusion module is designed to fuse the high-frequency information in the upsampled Tar and the original Ref to ensure the restoration of detailed information. Extensive experiments demonstrate that WavTrans outperforms the SOTA methods by a considerable margin with upsampling factors of 2-fold and 4-fold. Code will be available at https://github.com/XAIMI-Lab/WavTrans .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾明灵完成签到,获得积分10
3秒前
5秒前
5秒前
HTniconico完成签到 ,获得积分10
5秒前
Lucas应助糟糕的铁锤采纳,获得10
5秒前
情怀应助2333采纳,获得10
5秒前
6秒前
zhaoming发布了新的文献求助10
6秒前
玩命的振家完成签到,获得积分10
7秒前
perfect完成签到 ,获得积分10
7秒前
拼搏的盼望完成签到,获得积分20
7秒前
8秒前
lizhiqian2024发布了新的文献求助10
9秒前
恭喜发布了新的文献求助10
10秒前
11秒前
萘玉颜发布了新的文献求助10
12秒前
无限飞丹完成签到,获得积分10
12秒前
13秒前
13秒前
默默zzz发布了新的文献求助10
13秒前
hh发布了新的文献求助10
14秒前
Jim发布了新的文献求助10
15秒前
天天发布了新的文献求助10
15秒前
16秒前
搜集达人应助大眼的平松采纳,获得10
16秒前
2333发布了新的文献求助10
18秒前
19秒前
19秒前
满意尔芙发布了新的文献求助10
21秒前
22秒前
希望天下0贩的0应助伯爵采纳,获得10
23秒前
星辰大海应助TTTT采纳,获得10
23秒前
科研兄发布了新的文献求助10
24秒前
瑾瑜发布了新的文献求助10
24秒前
共享精神应助流流124141采纳,获得10
25秒前
一禅完成签到 ,获得积分10
26秒前
爆米花应助Yummy采纳,获得10
26秒前
科目三应助2333采纳,获得10
26秒前
26秒前
十八发布了新的文献求助10
27秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3802565
求助须知:如何正确求助?哪些是违规求助? 3348257
关于积分的说明 10337284
捐赠科研通 3064213
什么是DOI,文献DOI怎么找? 1682478
邀请新用户注册赠送积分活动 808168
科研通“疑难数据库(出版商)”最低求助积分说明 764010