CPAD-Net: Contextual parallel attention and dilated network for liver tumor segmentation

计算机科学 分割 过度拟合 人工智能 块(置换群论) 联营 卷积(计算机科学) 辍学(神经网络) 模式识别(心理学) 卷积神经网络 特征(语言学) 人工神经网络 机器学习 语言学 哲学 数学 几何学
作者
Xuehu Wang,Shuping Wang,Zhiling Zhang,Xiaoping Yin,Tianqi Wang,Li Nie
出处
期刊:Biomedical Signal Processing and Control [Elsevier]
卷期号:79: 104258-104258 被引量:31
标识
DOI:10.1016/j.bspc.2022.104258
摘要

Liver cancer is one of the leading causes of cancer death. Accurate and automatic liver tumor segmentation methods are urgent needs in clinical practice. Currently, Fully Convolutional Network and U-Net framework have achieved good results in medical image segmentation tasks, but there is still room for improvement. The traditional U-Net extracted a large number of low-level features, and the detailed features cannot be transmitted to deeper layers, resulting in poor segmentation ability. Therefore, this paper proposed a novel liver tumor segmentation network with contextual parallel attention and dilated convolution, called CPAD-Net. The proposed network applies a subsampled module, which has the same dimensionality reduction function as max-pooling without losing detailed features. CPAD-Net employs a contextual parallel attention module at skip connection. The module fuses contextual multi-scale features and extracts channel-spatial features in parallel. These features are concatenated with deep features to narrow the semantic gap and increase detailed information. Hybrid dilated convolution and double-dilated convolution are used in the encoding and decoding stages to expand the network receptive field. Dropout is added after each hybrid dilated convolution block to prevent overfitting. The efficacy of the proposed network is proved by widespread experimentation on two public datasets (LiTS2017 and 3Dircadb-01) and a clinical dataset from the Affiliated Hospital of Hebei University. The proposed network achieved Dice scores of 74.2%, 73.7% and 73.26%. The experimental results show that the proposed network outperforms most segmentation networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
呢喃发布了新的文献求助10
2秒前
2秒前
Kiki发布了新的文献求助10
3秒前
杨琪完成签到,获得积分10
3秒前
moooonu完成签到,获得积分10
5秒前
6秒前
机智的灵萱完成签到,获得积分10
7秒前
jackzzs完成签到,获得积分10
7秒前
科研通AI6.1应助zzzdx采纳,获得10
8秒前
8秒前
量子星尘发布了新的文献求助10
8秒前
量子星尘发布了新的文献求助30
9秒前
小蘑菇完成签到,获得积分10
9秒前
elous完成签到,获得积分10
10秒前
悟川发布了新的文献求助30
11秒前
自然谷秋发布了新的文献求助10
12秒前
13秒前
Akim应助复杂的问梅采纳,获得10
14秒前
今后应助Wynne采纳,获得10
14秒前
18秒前
18秒前
蓝色小萝卜完成签到,获得积分10
18秒前
哈哈哈发布了新的文献求助10
18秒前
20秒前
20秒前
orixero应助懵懂的土豆采纳,获得10
20秒前
五岳三鸟完成签到,获得积分10
21秒前
三木关注了科研通微信公众号
21秒前
蓝天应助撒西不理采纳,获得10
21秒前
默默的惜霜完成签到,获得积分10
21秒前
nabombagamerud完成签到,获得积分10
21秒前
陈爽er发布了新的文献求助10
24秒前
24秒前
勤奋荔枝完成签到,获得积分10
24秒前
XM关闭了XM文献求助
25秒前
25秒前
过江春雷发布了新的文献求助20
26秒前
勤奋荔枝发布了新的文献求助10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785906
求助须知:如何正确求助?哪些是违规求助? 5691004
关于积分的说明 15468779
捐赠科研通 4914961
什么是DOI,文献DOI怎么找? 2645485
邀请新用户注册赠送积分活动 1593228
关于科研通互助平台的介绍 1547539