Harnessing Deep Bladder Tumor Segmentation with Logical Clinical Knowledge

分割 计算机科学 卷积神经网络 膀胱癌 人工智能 图像分割 磁共振成像 模式识别(心理学) 计算机视觉 放射科 癌症 医学 内科学
作者
Xiao Huang,Xiaodong Yue,Zhikang Xu,Yufei Chen
出处
期刊:Lecture Notes in Computer Science 卷期号:: 725-735 被引量:3
标识
DOI:10.1007/978-3-031-16440-8_69
摘要

Segmentation of bladder tumors from Magnetic Resonance (MR) images is important for early detection and auxiliary diagnosis of bladder cancer. Deep Convolutional Neural Networks (DCNNs) have been widely used for bladder tumor segmentation but the DCNN-based tumor segmentation over-depends on data training and neglects the clinical knowledge. From a clinical point of view, a bladder tumor must rely on the bladder wall to survive and grow, and the domain prior is very helpful for bladder tumor localization. Aiming at the problem, we propose a novel bladder tumor segmentation method in which the clinical logic rules of bladder tumor and wall are incorporated into DCNNs and make the segmentation of DCNN harnessed by the clinical rules. The logic rules provide a semantic and friendly knowledge representation for human clinicians, which are easy to set and understand. Moreover, fusing the logic rules of clinical knowledge facilitates to reduce the data dependency of the segmentation network and achieve precise segmentation results even with limited labeled training images. Experiments on the bladder MR images from the cooperative hospital validate the effectiveness of the proposed tumor segmentation method.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
超帅的遥发布了新的文献求助10
1秒前
1秒前
CWNU_HAN应助aa采纳,获得30
3秒前
称心鸵鸟完成签到,获得积分10
3秒前
4秒前
yy625发布了新的文献求助10
5秒前
wanci应助97225采纳,获得10
5秒前
6秒前
书生完成签到,获得积分10
6秒前
danna应助gan采纳,获得10
6秒前
AU发布了新的文献求助10
7秒前
乐多发布了新的文献求助10
7秒前
完美世界应助winwin采纳,获得10
7秒前
超帅的遥完成签到,获得积分10
7秒前
梓枫完成签到,获得积分10
8秒前
hsyh完成签到,获得积分10
8秒前
CipherSage应助车载儿童采纳,获得10
8秒前
9秒前
李健应助吴垚采纳,获得10
10秒前
10秒前
科目三应助Minguk采纳,获得10
10秒前
ding应助Binbin采纳,获得10
10秒前
10秒前
11秒前
传奇3应助梓枫采纳,获得10
11秒前
123完成签到,获得积分20
11秒前
11秒前
爆米花应助鸑鷟采纳,获得150
14秒前
爱雨霁发布了新的文献求助10
15秒前
15秒前
zpz完成签到,获得积分10
16秒前
粒粒完成签到,获得积分10
16秒前
97225发布了新的文献求助10
16秒前
汉堡包应助王饱饱采纳,获得10
16秒前
慕青应助沉静逍遥采纳,获得10
16秒前
17秒前
17秒前
17秒前
18秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842012
求助须知:如何正确求助?哪些是违规求助? 3384135
关于积分的说明 10532872
捐赠科研通 3104461
什么是DOI,文献DOI怎么找? 1709640
邀请新用户注册赠送积分活动 823319
科研通“疑难数据库(出版商)”最低求助积分说明 773953