Identification of microplastics using a convolutional neural network based on micro-Raman spectroscopy

微塑料 卷积神经网络 鉴定(生物学) 化学 环境压力 拉曼光谱 人工智能 生物系统 环境化学 模式识别(心理学) 人工神经网络 计算机科学 环境科学 生态学 环境保护 光学 物理 生物
作者
Lihui Ren,Shuang Liu,Shi Huang,Qi Wang,Yuan Lu,Jiaojian Song,Jinjia Guo
出处
期刊:Talanta [Elsevier]
卷期号:260: 124611-124611 被引量:32
标识
DOI:10.1016/j.talanta.2023.124611
摘要

Microplastics (MPs) pose a threat to human and environmental health, and have emerged as a global environmental issue. Because MPs are small and complex, methods of quickly and reliably classifying and identifying them are either lacking or in the early stages of development. In this study, micro-Raman spectroscopy and a convolutional neural network (CNN) were combined to establish identification models for 10 MP references and three environmental samples. In addition, an interaction network was established based on pair-wise correlations of Raman bands to determine the influence of environmental stress on MPs. The CNN model achieved average classification accuracies of 96.43% and 95.6% for the 10 MP references and the three environmental samples, respectively. For MPs exposed to environmental stressors, an interaction network can provide highly sensitive, information-dense, and universally applicable signatures for characterizing the environmental processes affecting MP spectra. The results of this study can help establish efficient and automatic analysis for accurate identification of MPs as well as an intuitive exhibition of spectral changes on environmental exposure.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助玥越采纳,获得10
1秒前
why完成签到,获得积分10
1秒前
酷波er应助Nabi采纳,获得10
1秒前
子车茗应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
1秒前
Hello应助科研通管家采纳,获得10
1秒前
顾矜应助科研通管家采纳,获得10
1秒前
科目三应助黑猫警长采纳,获得10
1秒前
MchemG应助科研通管家采纳,获得10
2秒前
ML应助科研通管家采纳,获得10
2秒前
子车茗应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
汉堡包应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得30
2秒前
Ava应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得10
2秒前
2秒前
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
瑞士奶糖发布了新的文献求助10
3秒前
小蘑菇应助科研顺利采纳,获得10
4秒前
元66666发布了新的文献求助10
5秒前
二七完成签到,获得积分10
5秒前
秋星人完成签到 ,获得积分20
6秒前
7秒前
Yeal关注了科研通微信公众号
7秒前
Jia完成签到,获得积分10
7秒前
查百到完成签到,获得积分10
7秒前
yiy37完成签到,获得积分10
8秒前
8秒前
9秒前
9秒前
科研通AI6应助小郭采纳,获得10
10秒前
10秒前
11秒前
量子星尘发布了新的文献求助10
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5553580
求助须知:如何正确求助?哪些是违规求助? 4638120
关于积分的说明 14652281
捐赠科研通 4579970
什么是DOI,文献DOI怎么找? 2512009
邀请新用户注册赠送积分活动 1486966
关于科研通互助平台的介绍 1457791