亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid High-Fidelity Forecasting for Geological Carbon Storage Using Neural Operator and Transfer Learning

人工神经网络 学习迁移 计算机科学 操作员(生物学) 傅里叶变换 人工智能 机器学习 数学 化学 数学分析 生物化学 抑制因子 转录因子 基因
作者
Yusuf Falola,Siddharth Misra,Andres Nunez
标识
DOI:10.2118/216135-ms
摘要

Abstract Carbon sequestration is a promising technique to minimize the emission of CO2 to the atmosphere. However, the computational time required for CO2 forecasting using commercial numerical simulators can be prohibitive for complex problems. In this work, we propose the use of transfer learning to rapidly forecast the CO2 pressure plume and saturation distribution under uncertain geological and operational conditions, specifically for variations in injector locations and injector rates. We first train a Fourier Neural Operator (FNO)-based machine learning (ML) model on a limited set of simple scenarios. Then, we use transfer learning to fine-tune the FNO model on a larger set of complex scenarios. Most importantly, the CMG forecasting time for one scenario requires approximately 40 to 50 minutes, which was drastically reduced to 12 seconds by using Fourier Neural Operator and then reduced further to 8 seconds by implementing transfer learning on the Fourier neural operator. The mean relative errors of the neural operator predictions of pressure and saturation were 1.42% and 7.9%, respectively. These errors get slightly higher when transfer learning is implemented on neural operator to learn complex task with less amount of data and low training time. Our results show that transfer learning can significantly reduce the computational time required for CO2 forecasting. The data generation and model training times were reduced by 50% and 75%, respectively, by using transfer learning on the Fourier neural operator. Additionally, the total number of trainable parameters was reduced by 99.9%. Our results demonstrate the potential of transfer learning for rapid forecasting of CO2 pressure plume and saturation distribution. This technique can be used to improve the efficiency of CO2 forecasting and to help mitigate the risks associated with CO2 leakage.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
共享精神应助张志伟采纳,获得10
10秒前
Lain完成签到,获得积分10
25秒前
39秒前
张志伟发布了新的文献求助10
43秒前
55秒前
烂漫的无剑完成签到,获得积分10
1分钟前
juan完成签到 ,获得积分10
1分钟前
1分钟前
林沐发布了新的文献求助10
1分钟前
lingxiaoxi发布了新的文献求助10
1分钟前
lingxiaoxi完成签到,获得积分10
1分钟前
林沐完成签到,获得积分10
1分钟前
隐形曼青应助林沐采纳,获得10
1分钟前
乐乐应助张志伟采纳,获得10
1分钟前
2分钟前
张志伟发布了新的文献求助10
2分钟前
在水一方应助张志伟采纳,获得10
3分钟前
英姑应助科研通管家采纳,获得10
3分钟前
cy0824完成签到 ,获得积分10
4分钟前
文艺的筮完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
张志伟发布了新的文献求助10
4分钟前
愉快的老三完成签到,获得积分10
4分钟前
Ava应助张志伟采纳,获得10
5分钟前
5分钟前
张志伟发布了新的文献求助10
5分钟前
MchemG完成签到,获得积分0
5分钟前
ding应助张志伟采纳,获得10
6分钟前
Finch11完成签到 ,获得积分10
6分钟前
6分钟前
张志伟发布了新的文献求助10
6分钟前
科研通AI5应助张志伟采纳,获得10
6分钟前
6分钟前
小源同学完成签到,获得积分10
7分钟前
张志伟发布了新的文献求助10
7分钟前
任性冰凡完成签到 ,获得积分10
7分钟前
纯情的无色完成签到 ,获得积分10
7分钟前
我真的要好好学习完成签到 ,获得积分10
7分钟前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Effect of deresuscitation management vs. usual care on ventilator-free days in patients with abdominal septic shock 200
Erectile dysfunction From bench to bedside 200
Advanced Introduction to Behavioral Law and Economics 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825008
求助须知:如何正确求助?哪些是违规求助? 3367346
关于积分的说明 10445230
捐赠科研通 3086687
什么是DOI,文献DOI怎么找? 1698177
邀请新用户注册赠送积分活动 816657
科研通“疑难数据库(出版商)”最低求助积分说明 769907