Mapping small inland wetlands in the South-Kivu province by integrating optical and SAR data with statistical models for accurate distribution assessment

湿地 遥感 随机森林 环境科学 分布(数学) 地理 自然地理学 地图学 生态学 计算机科学 数学 机器学习 生物 数学分析
作者
Géant Basimine Chuma,Mushagalusa Nachigera Gustave,Serge Schmitz
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:13 (1) 被引量:4
标识
DOI:10.1038/s41598-023-43292-7
摘要

There are several techniques for mapping wetlands. In this study, we examined four statistical models to assess the potential distribution of wetlands in the South-Kivu province by combining optical and SAR images. The approach involved integrating topographic, hydrological, and vegetation indices into the four most used classifiers, namely Artificial Neural Network (ANN), Random Forest (RF), Boosted Regression Tree (BRT), and Maximum Entropy (MaxEnt). A wetland distribution map was generated and classified into 'wetland' and 'non-wetland.' The results showed variations in predictions among the different models. RF exhibited the most accurate predictions, achieving an overall classification accuracy of 95.67% and AUC and TSS values of 82.4%. Integrating SAR data improved accuracy and precision, particularly for mapping small inland wetlands. Our estimations indicate that wetlands cover approximately 13.5% (898,690 ha) of the entire province. BRT estimated wetland areas to be ~ 16% (1,106,080 ha), while ANN estimated ~ 14% (967,820 ha), MaxEnt ~ 15% (1,036,950 ha), and RF approximately ~ 10% (691,300 ha). The distribution of these areas varied across different territories, with higher values observed in Mwenga, Shabunda, and Fizi. Many of these areas are permanently flooded, while others experience seasonal inundation. Through digitization, the delineation process revealed variations in wetland areas, ranging from tens to thousands of hectares. The geographical distribution of wetlands generated in this study will serve as an essential reference for future investigations and pave the way for further research on characterizing and categorizing these areas.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿秋完成签到,获得积分10
刚刚
刚刚
汉堡包应助七濑采纳,获得10
3秒前
3秒前
星辰大海应助木木大头采纳,获得10
4秒前
6秒前
小青菜发布了新的文献求助20
6秒前
弓箭手完成签到 ,获得积分10
8秒前
Crystal完成签到,获得积分10
9秒前
Hello应助郭郭9706采纳,获得30
10秒前
10秒前
XHX发布了新的文献求助10
10秒前
科研通AI5应助偑厸采纳,获得10
11秒前
12秒前
14秒前
谦让月饼完成签到 ,获得积分10
14秒前
lli完成签到,获得积分10
17秒前
17秒前
17秒前
wkf218416完成签到,获得积分10
18秒前
七濑发布了新的文献求助10
18秒前
19秒前
Akim应助弓箭手采纳,获得10
19秒前
Orange应助Yolo采纳,获得10
19秒前
星空发布了新的文献求助10
19秒前
梁成伟完成签到,获得积分10
21秒前
wkf218416发布了新的文献求助30
22秒前
23秒前
24秒前
郭郭9706发布了新的文献求助30
25秒前
27秒前
wumengke完成签到,获得积分10
28秒前
WizBLue发布了新的文献求助10
28秒前
乐乐应助科研通管家采纳,获得50
32秒前
Jasper应助科研通管家采纳,获得10
32秒前
彭于晏应助科研通管家采纳,获得10
32秒前
英俊的铭应助科研通管家采纳,获得10
32秒前
科研通AI5应助科研通管家采纳,获得10
32秒前
Akim应助科研通管家采纳,获得10
32秒前
斯文败类应助科研通管家采纳,获得10
32秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842690
求助须知:如何正确求助?哪些是违规求助? 3384714
关于积分的说明 10536898
捐赠科研通 3105250
什么是DOI,文献DOI怎么找? 1710164
邀请新用户注册赠送积分活动 823501
科研通“疑难数据库(出版商)”最低求助积分说明 774137