清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Machine learning-based monosaccharide profiling for tissue-specific classification of Wolfiporia extensa samples

人工智能 线性判别分析 朴素贝叶斯分类器 支持向量机 随机森林 梯度升压 机器学习 人工神经网络 计算机科学 模式识别(心理学) Boosting(机器学习) 分类器(UML) 逻辑回归 数学
作者
Shih-Yi Hsiung,Shun-Xin Deng,Jing Li,Sheng-Yao Huang,Chen‐Kun Liaw,Su-Yun Huang,Ching‐Chiung Wang,Yves S. Y. Hsieh
出处
期刊:Carbohydrate Polymers [Elsevier]
卷期号:322: 121338-121338 被引量:9
标识
DOI:10.1016/j.carbpol.2023.121338
摘要

Machine learning (ML) has been used for many clinical decision-making processes and diagnostic procedures in bioinformatics applications. We examined eight algorithms, including linear discriminant analysis (LDA), logistic regression (LR), k-nearest neighbor (KNN), random forest (RF), gradient boosting machine (GBM), support vector machine (SVM), Naïve Bayes classifier (NB), and artificial neural network (ANN) models, to evaluate their classification and prediction capabilities for four tissue types in Wolfiporia extensa using their monosaccharide composition profiles. All 8 ML-based models were assessed as exemplary models with AUC exceeding 0.8. Five models, namely LDA, KNN, RF, GBM, and ANN, performed excellently in the four-tissue-type classification (AUC > 0.9). Additionally, all eight models were evaluated as good predictive models with AUC value > 0.8 in the three-tissue-type classification. Notably, all 8 ML-based methods outperformed the single linear discriminant analysis (LDA) plotting method. For large sample sizes, the ML-based methods perform better than traditional regression techniques and could potentially increase the accuracy in identifying tissue samples of W. extensa.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
现实的俊驰完成签到 ,获得积分10
3秒前
29秒前
汉堡包应助七安得安采纳,获得10
34秒前
47秒前
七安得安发布了新的文献求助10
52秒前
yipmyonphu完成签到,获得积分10
55秒前
Benhnhk21完成签到,获得积分10
1分钟前
蔓越莓麻薯完成签到 ,获得积分10
1分钟前
Vintoe完成签到 ,获得积分10
1分钟前
linkman发布了新的文献求助10
1分钟前
1分钟前
linkman发布了新的文献求助10
1分钟前
1分钟前
jjj完成签到,获得积分10
2分钟前
yiyixt完成签到 ,获得积分10
2分钟前
方白秋完成签到,获得积分0
2分钟前
原子超人完成签到,获得积分10
3分钟前
hehe完成签到,获得积分10
3分钟前
Jasper应助joysa采纳,获得10
3分钟前
Owen应助科研通管家采纳,获得10
3分钟前
3分钟前
HZ发布了新的文献求助10
3分钟前
3分钟前
叶千山完成签到 ,获得积分10
3分钟前
joysa发布了新的文献求助10
4分钟前
HZ完成签到,获得积分20
4分钟前
量子星尘发布了新的文献求助10
5分钟前
Criminology34应助阿泽采纳,获得10
5分钟前
QQWRV发布了新的文献求助30
5分钟前
ZaZa完成签到,获得积分10
5分钟前
6分钟前
pengpengyin发布了新的文献求助10
6分钟前
田様应助pengpengyin采纳,获得10
6分钟前
alanbike完成签到,获得积分10
6分钟前
miaomiao123完成签到 ,获得积分10
6分钟前
青树柠檬完成签到 ,获得积分10
7分钟前
房天川完成签到 ,获得积分10
7分钟前
7分钟前
科研通AI6应助科研通管家采纳,获得10
7分钟前
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5644940
求助须知:如何正确求助?哪些是违规求助? 4766456
关于积分的说明 15025933
捐赠科研通 4803292
什么是DOI,文献DOI怎么找? 2568166
邀请新用户注册赠送积分活动 1525618
关于科研通互助平台的介绍 1485156