Nanodeliveries of Food Polyphenols as Nutraceuticals

多酚 保健品 食品科学 生物利用度 黄酮醇 化学 柚皮苷 功能性食品 橙皮苷 原花青素 抗氧化剂 生物 生物化学 医学 药理学 替代医学 色谱法 病理
作者
Santwana Palai,Mithun Rudrapal
标识
DOI:10.1002/9781394188864.ch8
摘要

Chapter 8 Nanodeliveries of Food Polyphenols as Nutraceuticals Santwana Palai, Corresponding Author Santwana Palai [email protected] Search for more papers by this authorMithun Rudrapal, Mithun RudrapalSearch for more papers by this author Santwana Palai, Corresponding Author Santwana Palai [email protected] Search for more papers by this authorMithun Rudrapal, Mithun RudrapalSearch for more papers by this author Book Editor(s):Mithun Rudrapal, Mithun RudrapalSearch for more papers by this author First published: 26 October 2023 https://doi.org/10.1002/9781394188864.ch8 AboutPDFPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShareShare a linkShare onEmailFacebookTwitterLinkedInRedditWechat Abstract Polyphenols are found in a numerous plant-based foods and drinks such as apples, mango, berries, broccoli, citrus fruit, plums, tea, chocolate, and coffee. Foods rich in polyphenols, such as fruits, nuts, vegetables, and drinks, help to prevent the progression of lifestyle illnesses such as cardiovascular ailments and Type-2 diabetes. Flavanols in tea, broad beans, apples, cocoa, flavanones like hesperidin, naringin in citrus fruit, hydroxycinnamates in many fruits, coffee, flavonols like quercetin in apples, onions, tea, and anthocyanins in grapes and berries are common polyphenols that are consumed. Numerous in vivo and in vitro interventions, along with epidemiological research, justify the action of polyphenols in the inhibition of chronic illnesses. Polyphenols are mostly found in vegetables and fruits, and they are classified as flavonoids, flavanols, phenolic acids, and lignans according to their structure. These plant-derived functional dietary components have biological activities such as antioxidant, pro-oxidant, and anti-inflammatory behaviors. However, these polyphenolic substances have less oral bioavailability, limiting their use as nutraceuticals. Plant-based nanocarriers are adapted for encapsulation, preservation, and delivery of polyphenols, thus increasing their bioavailability. The progress of nanodelivery vehicles for encapsulating and distributing food polyphenolic complexes could help to overcome the limits of the water solubility and bioavailability of food polyphenols, which may advance nanodeliveries that aid in using food polyphenols as functional food. References Patra , J.K. , Das , G. , Fraceto , L.F. et al. ( 2018 ). Nano based drug delivery systems: recent developments and future prospects . Journal of Nanobiotechnology 16 ( 71 ): 1 – 33 . https://doi.org/10.1186/s12951-018-0392-8 . 10.1186/s12951-018-0392-8 PubMedWeb of Science®Google Scholar Williamson , G. ( 2017 ). The role of polyphenols in modern nutrition . Nutrition Bulletin 42 ( 3 ): 226 – 235 . https://doi.org/10.1111/nbu.12278 . 10.1111/nbu.12278 CASPubMedWeb of Science®Google Scholar Chavda , V.P. , Patel , A.B. , Mistry , K.J. et al. ( 2022 ). Nano-drug delivery systems entrapping natural bioactive compounds for cancer: recent progress and future challenges . Frontiers in Oncology 12 : 1041 . https://doi.org/10.3389/fonc.2022.867655 . 10.3389/fonc.2022.867655 Web of Science®Google Scholar Bernela , M. , Kaur , P. , Ahuja , M. , and Thakur , R. ( 2018 ). Nano-based delivery system for nutraceuticals: the potential future . Advances in Animal Biotechnology and Its Applications 103 – 117 . https://doi.org/10.1007/978-981-10-4702-2_7 . 10.1007/978-981-10-4702-2_7 Google Scholar Payyappallimana , U. ( 2010 ). Role of traditional medicine in primary health care . Yokohama Journal of Social Sciences 14 ( 6 ): 57 – 75 . Google Scholar Puttasiddaiah , R. , Lakshminarayana , R. , Somashekar , N.L. et al. ( 2022 ). Advances in nanofabrication technology for nutraceuticals: new insights and future trends . Bioengineering 9 ( 9 ): 478 . https://doi.org/10.3390/bioengineering9090478 . 10.3390/bioengineering9090478 CASPubMedWeb of Science®Google Scholar Anand , S. , Sowbhagya , R. , Ansari , M.A. et al. ( 2022 ). Polyphenols and their nanoformulations: protective effects against human diseases . Life 12 ( 10 ): 1639 . https://doi.org/10.3390/life12101639 . 10.3390/life12101639 CASPubMedGoogle Scholar Reyed , R.M. ( 2023 ). Focusing on individualized nutrition within the algorithmic diet: an in-depth look at recent advances in nutritional science, microbial diversity studies, and human health . Food Health 5 ( 1 ): 5 . https://doi.org/10.53388/FH2023005 . 10.53388/FH2023005 Google Scholar Fleuriet , A. and Macheix , J.J. ( 2003 ). Phenolic acids in fruits and vegetables . Oxidative Stress and Disease 9 : 1 – 42 . CASGoogle Scholar Pandey , K.B. and Rizvi , S.I. ( 2009 ). Plant polyphenols as dietary antioxidants in human health and disease . Oxidative Medicine and Cellular Longevity 2 : 270 – 278 . https://doi.org/10.4161/oxim.2.5.9498 . 10.4161/oxim.2.5.9498 PubMedWeb of Science®Google Scholar Barreca , D. , Gattuso , G. , Bellocco , E. et al. ( 2017 ). Flavanones: citrus phytochemical with health-promoting properties . BioFactors 43 ( 4 ): 495 – 506 . https://doi.org/10.1002/biof.1363 . 10.1002/biof.1363 CASPubMedWeb of Science®Google Scholar Yao , L.H. , Jiang , Y.M. , Shi , J. et al. ( 2004 ). Flavonoids in food and their health benefits . Plant Foods for Human Nutrition 59 : 113 – 122 . https://doi.org/10.1007/s11130-004-0049-7 . 10.1007/s11130-004-0049-7 CASPubMedWeb of Science®Google Scholar Guven , H. , Arici , A. , and Simsek , O. ( 2019 ). Flavonoids in our foods: a short review . Journal of Basic, Clinical and Applied Health Science 3 ( 2 ): 96 – 106 . 30621/jbachs.2019.555?. Google Scholar Paun , N. , Botoran , O.R. , and Niculescu , V.C. ( 2022 ). Total phenolic, anthocyanins HPLC-DAD-MS determination and antioxidant capacity in black grape skins and blackberries: a comparative study . Applied Sciences 12 ( 2 ): 936 . https://doi.org/10.3390/app12020936 . 10.3390/app12020936 CASGoogle Scholar Rasheed , S. , Rehman , K. , Shahid , M. et al. ( 2022 ). Therapeutic potentials of genistein: new insights and perspectives . Journal of Food Biochemistry 46 ( 9 ): 14228 . https://doi.org/10.1111/jfbc.14228 . 10.1111/jfbc.14228 CASPubMedWeb of Science®Google Scholar Benbouguerra , N. , Hornedo-Ortega , R. , Garcia , F. et al. ( 2021 ). Stilbenes in grape berries and wine and their potential role as anti-obesity agents: a review . Trends in Food Science and Technology 112 : 362 – 381 . 10.1016/j.tifs.2021.03.060 CASWeb of Science®Google Scholar Hajibabaie , F. , Abedpoor , N. , Safavi , K. , and Taghian , F. ( 2022 ). Natural remedies medicine derived from flaxseed (secoisolariciresinoldiglucoside, lignans, and α-linolenic acid) improve network targeting efficiency of diabetic heart conditions based on computational chemistry techniques and pharmacophore modeling . Journal of Food Biochemistry 14480 . Web of Science®Google Scholar Adetuyi , B.O. , Odine , G.O. , Olajide , P.A. et al. ( 2022 ). Nutraceuticals: role in metabolic disease, prevention and treatment . World News of Natural Sciences 42 : 1 – 27 . CASGoogle Scholar Domínguez Díaz , L. , Fernández-Ruiz , V. , and Cámara , M. ( 2020 ). The frontier between nutrition and pharma: the international regulatory framework of functional foods, food supplements and nutraceuticals . Critical Reviews in Food Science and Nutrition 60 ( 10 ): 1738 – 1746 . 10.1080/10408398.2019.1592107 CASPubMedWeb of Science®Google Scholar Zeng , Z. , Centner , C. , Gollhofer , A. , and König , D. ( 2021 ). Effects of dietary strategies on exercise-induced oxidative stress: a narrative review of human studies . Antioxidants 10 ( 4 ): 542 . 10.3390/antiox10040542 CASPubMedWeb of Science®Google Scholar de Souza Mesquita , L.M. , Mennitti , L.V. , de Rosso , V.V. , and Pisani , L.P. ( 2021 ). The role of vitamin A and its pro-vitamin carotenoids in fetal and neonatal programming: gaps in knowledge and metabolic pathways . Nutrition Research 79 ( 1 ): 76 – 87 . Google Scholar Odoh , U.E. , Egbuna , C. , Onyegbulam , C.M. et al. ( 2023 ). Bioactive compounds in the management of nutritional disorders . In: Role of Nutrigenomics in Modern-Day Healthcare and Drug Discovery (ed. G.D. Tupas and C. Egbuna ) 343 – 358 . 10.1016/B978-0-12-824412-8.00010-2 Google Scholar Oyedepo , T.A. and Palai , S. ( 2021 ). Herbal remedies, toxicity, and regulations . In: Preparation of Phytopharmaceuticals for the Management of Disorders (ed. C. Egbuna , A. Mishra and M. Goyal ), 89 – 127 . Academic Press . 10.1016/B978-0-12-820284-5.00014-9 Google Scholar Palai , S. and Patra , R. ( 2021 ). Wound management using phytonanoparticles: an innovative approach . Journal of Phytonanotechnology and Pharmaceutical Sciences 1 ( 3 ): 1 – 7 . 10.54085/jpps.2021.1.3.1 Google Scholar Das , M. , Saxena , N. , and Dwivedi , P.D. ( 2009 ). Emerging trends of nanoparticles application in food technology: safety paradigms . Nanotoxicology 3 ( 1 ): 10 – 18 . 10.1080/17435390802504237 CASWeb of Science®Google Scholar Rudrapal , M. , Mishra , A.K. , Rani , L. et al. ( 2022 ). Nanodelivery of dietary polyphenols for therapeutic applications . Molecules 27 ( 24 ): 8706 . 10.3390/molecules27248706 CASPubMedWeb of Science®Google Scholar de Souza Simões , L. , Madalena , D.A. , Pinheiro , A.C. et al. ( 2017 ). Micro-and nano bio-based delivery systems for food applications: in vitro behavior . Advances in Colloid and Interface Science 243 : 23 – 45 . 10.1016/j.cis.2017.02.010 PubMedWeb of Science®Google Scholar Caballero , S. , Li , Y.O. , McClements , D.J. , and Davidov-Pardo , G. ( 2022 ). Encapsulation and delivery of bioactive citrus pomace polyphenols: a review . Critical Reviews in Food Science and Nutrition 62 ( 29 ): 8028 – 8044 . 10.1080/10408398.2021.1922873 CASPubMedWeb of Science®Google Scholar Tamjidi , F. , Shahedi , M. , Varshosaz , J. , and Nasirpour , A. ( 2013 ). Nanostructured lipid carriers (NLC): a potential delivery system for bioactive food molecules . Innovative Food Science and Emerging Technologies 19 : 29 – 43 . 10.1016/j.ifset.2013.03.002 CASWeb of Science®Google Scholar Siraj , A. , Naqash , F. , Shah , M.A. et al. ( 2021 ). Nanoemulsions: formation, stability and an account of dietary polyphenol encapsulation . International Journal of Food Science and Technology 56 ( 9 ): 4193 – 4205 . 10.1111/ijfs.15228 CASWeb of Science®Google Scholar Rudrapal , M. , Khairnar , S.J. , Khan , J. et al. ( 2022 ). Dietary polyphenols and their role in oxidative stress-induced human diseases: insights into protective effects, antioxidant potentials and mechanism(s) of action . Frontiers in Pharmacology 13 : 283 . 10.3389/fphar.2022.806470 Web of Science®Google Scholar Palai , S. ( 2022 ). Nanotherapeutics of phytoantioxidants for inflammatory disorders . In: Phytoantioxidants and Nanotherapeutics (ed. M. Rudrapal ), 377 – 404 . John Wiley & Son . 10.1002/9781119811794.ch17 Google Scholar Kamaraj , S. , Vinodhkumar , R. , Anandakumar , P. et al. ( 2007 ). The effects of quercetin on antioxidant status and tumor markers in the lung and serum of mice treated with benzo (a) pyrene . Biological and Pharmaceutical Bulletin 30 ( 12 ): 2268 – 2273 . https://doi.org/10.1248/bpb.30.2268 . 10.1248/bpb.30.2268 CASPubMedWeb of Science®Google Scholar Li , M. , Rao , C. , Ye , X. et al. ( 2022 ). Applications for natural deep eutectic solvents in Chinese herbal medicines . Frontiers in Pharmacology 13 : 5564 . https://doi.org/10.3389/fphar.2022.1104096 . 10.3389/fphar.2022.1104096 Web of Science®Google Scholar Raj , P. , Thandapilly , S.J. , Wigle , J. et al. ( 2021 ). A comprehensive analysis of the efficacy of resveratrol in atherosclerotic cardiovascular disease, myocardial infarction and heart failure . Molecules 26 ( 21 ): 6600 . https://doi.org/10.3390/molecules26216600 . 10.3390/molecules26216600 CASPubMedWeb of Science®Google Scholar Irvin , L. , Jackson , C. , Hill , A.L. et al. ( 2019 ). Skullcaps (Scutellaria spp.): Ethnobotany and current research . In: Medicinal Plants: From Farm to Pharmacy (ed. N. Joshee , S. Dhekney , P. Parajuli ), 141 – 168 , Cham : Springer . 10.1007/978-3-030-31269-5_7 Google Scholar Palai , S. ( 2022 ). Berberine . In: Nutraceuticals and Health Care (ed. J. Kour and G.A. Nayik ), 359 – 368 . Academic Press . 10.1016/B978-0-323-89779-2.00020-X Google Scholar Huang , J. , He , Z. , Cheng , R. et al. ( 2020 ). Assessment of binding interaction dihydromyricetin and myricetin with bovine lactoferrin and effects on antioxidant activity . Spectrochimica Acta, Part A: Molecular and Biomolecular 243 : 118731 . https://doi.org/10.1016/j.saa.2020.118731 . 10.1016/j.saa.2020.118731 CASPubMedWeb of Science®Google Scholar Yang , L. , Gao , Y. , Bajpai , V.K. et al. ( 2021 ). Advance toward isolation, extraction, metabolism and health benefits of kaempferol, a major dietary flavonoid with future perspectives . Critical Reviews in Food Science and Nutrition 1 – 17 . https://doi.org/10.3390/metabo13010063 . 10.3390/metabo13010063 Web of Science®Google Scholar Akbar , S. and Akbar , S. ( 2020 ). Glycyrrhiza glabra L. (Fabaceae/Leguminosae) (Syns.: g. glanduliferaWaldst. & Kit.; G. hirsuta Pall.; G. pallida Boiss. & Noe; G. violaceaBoiss. & Noe) . Handbook of 200 Medicinal Plants: A Comprehensive Review of Their Traditional Medical Uses and Scientific Justifications 963 – 980 . https://doi.org/10.1007/978-3-030-16807-0_103 . 10.1007/978-3-030-16807-0_103 Google Scholar Long , L. , Han , X. , Ma , X. et al. ( 2020 ). Protective effects of fisetin against myocardial ischemia/reperfusion injury . Experimental and Therapeutic Medicine 19 ( 5 ): 3177 – 3188 . https://doi.org/10.3892/etm.2020.8576 . 10.3892/etm.2020.8576 CASPubMedWeb of Science®Google Scholar Ginwala , R. , Bhavsar , R. , Chigbu , D.G.I. et al. ( 2019 ). Potential role of flavonoids in treating chronic inflammatory diseases with a special focus on the anti-inflammatory activity of apigenin . Antioxidants 8 ( 2 ): 35 . 10.3390/antiox8020035 PubMedWeb of Science®Google Scholar Singh , P. , Bansal , S. , Kuhad , A. et al. ( 2020 ). Naringenin ameliorates diabetic neuropathic pain by modulation of oxidative-nitrosative stress, cytokines and MMP-9 levels . Food and Function 11 ( 5 ): 4548 – 4560 . 10.1039/C9FO00881K CASPubMedWeb of Science®Google Scholar Rizvi , S.I. , Zaid , M.A. , Anis , R. , and Mishra , N. ( 2005 ). Protective role of tea catechins against oxidation-induced damage of type 2 diabetic erythrocytes . Clinical and Experimental Pharmacology and Physiology 32 : 70 – 75 . 10.1111/j.1440-1681.2005.04160.x CASPubMedWeb of Science®Google Scholar Seeram , N.P. , Cichewicz , R.H. , Chandra , A. , and Nair , M.G. ( 2003 ). Cyclooxygenase inhibitory and antioxidant compounds from crabapple fruits . Journal of Agricultural and Food Chemistry 51 ( 7 ): 1948 – 1951 . 10.1021/jf025993u CASPubMedWeb of Science®Google Scholar Palai , S. , Chandra , S. , Pandey , N. , and Singh , R. , 2023 . Theophylline: a bioactive dimethylxanthine alkaloid in the essential guide to alkaloids . 205 – 215 . ISBN: 979-8-88697-456-0 © 2023 Nova Science Publishers, Inc. Google Scholar Thangavel , P. , Puga-Olguín , A. , Rodríguez-Landa , J.F. , and Zepeda , R.C. ( 2019 ). Genistein as potential therapeutic candidate for menopausal symptoms and other related diseases . Molecules 24 ( 21 ): 3892 . 10.3390/molecules24213892 CASPubMedWeb of Science®Google Scholar Vuolo , M.M. , Lima , V.S. , and Junior , M.R.M. ( 2019 ). Phenolic compounds: structure, classification, and antioxidant power . In: Bioactive Compounds (ed. M.M. Vuolo , V.S. Lima , and M.R.M. Junior ), 33 – 50 . Woodhead Publishing . 10.1016/B978-0-12-814774-0.00002-5 Google Scholar Bié , J. , Sepodes , B. , Fernandes , P.C. , and Ribeiro , M.H. ( 2023 ). Polyphenols in health and disease: gut microbiota, bioaccessibility, and bioavailability . Compounds 3 ( 1 ): 40 – 72 . https://doi.org/10.3390/compounds3010005 . 10.3390/compounds3010005 CASGoogle Scholar Durazzo , A. , Lucarini , M. , Souto , E.B. et al. ( 2019 ). Polyphenols: a concise overview on the chemistry, occurrence, and human health . Phytotherapy Research 33 ( 9 ): 2221 – 2243 . 10.1002/ptr.6419 PubMedWeb of Science®Google Scholar Andrew , M. and Jayaraman , G. ( 2020 ). Structural features of microbial exopolysaccharides in relation to their antioxidant activity . Carbohydrate Research 487 : 107881 . 10.1016/j.carres.2019.107881 CASPubMedWeb of Science®Google Scholar Hosseinzadeh , R. , Khorsandi , K. , and Hemmaty , S. ( 2013 ). Study of the effect of surfactants on extraction and determination of polyphenolic compounds and antioxidant capacity of fruits extracts . PloS one 8 ( 3 ): e57353 . 10.1371/journal.pone.0057353 CASPubMedWeb of Science®Google Scholar Zhang , Z. , Li , X. , Sang , S. et al. ( 2022 ). Polyphenols as plant-based nutraceuticals: health effects, encapsulation, nano-delivery, and application . Foods 11 ( 15 ): 2189 . 10.3390/foods11152189 CASPubMedWeb of Science®Google Scholar Dal , H.Ö.G. and Yilmaz , Y. ( 2022 ). Use of tea catechins in foods as a functional ingredient . In: Tea as a Food Ingredient (ed. H.O. Guler and Y. Yilmaz ) 241 – 257 . CRC Press . Google Scholar Yordi , E.G. , Pérez , E.M. , Matos , M.J. , and Villares , E.U. ( 2012 ). Antioxidant and pro-oxidant effects of polyphenolic compounds and structure-activity relationship evidence . Nutrition, Well-being and Health 2 : 23 – 48 . Google Scholar Guo , A. and Xiong , Y.L. ( 2021 ). Myoprotein–phytophenol interaction: implications for muscle food structure-forming properties . Comprehensive Reviews in Food Science and Food Safety 20 ( 3 ): 2801 – 2824 . 10.1111/1541-4337.12733 CASPubMedWeb of Science®Google Scholar Zhu , C. , Yang , J. , Nie , X. et al. ( 2022 ). Influences of dietary vitamin E, selenium-enriched yeast, and soy isoflavone supplementation on growth performance, antioxidant capacity, carcass traits, meat quality and gut microbiota in finishing pigs . Antioxidants 11 ( 8 ): 1510 . 10.3390/antiox11081510 CASPubMedWeb of Science®Google Scholar AbouAitah , K. , Higazy , I.M. , Swiderska-Sroda , A. et al. ( 2021 ). Anti-inflammatory and antioxidant effects of nanoformulations composed of metal-organic frameworks delivering rutin and/or piperine natural agents . Drug Delivery 28 ( 1 ): 1478 – 1495 . 10.1080/10717544.2021.1949073 CASPubMedWeb of Science®Google Scholar Talhouk , R.S. , Karam , C. , Fostok , S. et al. ( 2007 ). Anti-inflammatory bioactivities in plant extracts . Journal of Medicinal Food 10 ( 1 ): 1 – 10 . 10.1089/jmf.2005.055 CASPubMedWeb of Science®Google Scholar Coppo , E. and Marchese , A. ( 2014 ). Antibacterial activity of polyphenols . Current Pharmaceutical Biotechnology 15 ( 4 ): 380 – 390 . 10.2174/138920101504140825121142 CASPubMedWeb of Science®Google Scholar Kalita , B. , Das , M.K. , and Sharma , A.K. ( 2013 ). Novel phytosome formulations in making herbal extracts more effective . Research Journal of Pharmacy and Technology 6 ( 11 ): 1295 – 1301 . Google Scholar Santos , I.S. , Ponte , B.M. , Boonme , P. et al. ( 2013 ). Nanoencapsulation of polyphenols for protective effect against colon–rectal cancer . Biotechnology Advances 31 ( 5 ): 514 – 523 . https://doi.org/10.1016/j.biotechadv.2012.08.005 . 10.1016/j.biotechadv.2012.08.005 CASPubMedWeb of Science®Google Scholar Kidd , P.M. ( 2009 ). Bioavailability and activity of phytosome complexes from botanical polyphenols: the silymarin, curcumin, green tea, and grape seed extracts . Alternative Medicine Review 14 ( 3 ): 226 – 246 . PubMedWeb of Science®Google Scholar Shahwan , M. , Alhumaydhi , F. , Ashraf , G.M. et al. ( 2022 ). Role of polyphenols in combating type 2 diabetes and insulin resistance . International Journal of Biological Macromolecules 206 : 567 – 579 . https://doi.org/10.1016/j.ijbiomac.2022.03.004 . 10.1016/j.ijbiomac.2022.03.004 CASPubMedWeb of Science®Google Scholar Wang , S. , Du , S. , Wang , W. , and Zhang , F. ( 2020 ). Therapeutic investigation of quercetin nanomedicine in a zebrafish model of diabetic retinopathy . Biomedicine and Pharmacotherapy 130 : 110573 . 10.1016/j.biopha.2020.110573 CASPubMedWeb of Science®Google Scholar Ahmad , M. and Gani , A. ( 2021 ). Development of novel functional snacks containing nano-encapsulated resveratrol with anti-diabetic, anti-obesity and antioxidant properties . Food Chemistry 352 : 129323 . https://doi.org/10.1016/j.foodchem.2021.129323 . 10.1016/j.foodchem.2021.129323 CASPubMedWeb of Science®Google Scholar Luna-Vázquez , F.J. , Ibarra-Alvarado , C. , Rojas-Molina , A. et al. ( 2013 ). Nutraceutical value of black cherry Prunus serotina Ehrh. fruits: antioxidant and antihypertensive properties . Molecules 18 ( 12 ): 14597 – 14612 . 10.3390/molecules181214597 PubMedWeb of Science®Google Scholar Milinčić , D.D. , Popović , D.A. , Lević , S.M. et al. ( 2019 ). Application of polyphenol-loaded nanoparticles in food industry . Nanomaterials 9 ( 11 ): 1629 . 10.3390/nano9111629 CASPubMedWeb of Science®Google Scholar Puligundla , P. , Mok , C. , Ko , S. et al. ( 2017 ). Nanotechnological approaches to enhance the bioavailability and therapeutic efficacy of green tea polyphenols . Journal of Functional Foods 34 : 139 – 151 . 10.1016/j.jff.2017.04.023 CASWeb of Science®Google Scholar Saad , B. , Ghareeb , B. , and Kmail , A. ( 2021 ). Metabolic and epigenetics action mechanisms of antiobesity medicinal plants and phytochemicals . Evidence-Based Complementary and Alternative Medicine 2021 : 1 – 19 . https://doi.org/10.1155/2021/9995903 . 10.1155/2021/9995903 Web of Science®Google Scholar Rufino , A.T. , Costa , V.M. , Carvalho , F. , and Fernandes , E. ( 2021 ). Flavonoids as antiobesity agents: a review . Medicinal Research Reviews 41 ( 1 ): 556 – 585 . 10.1002/med.21740 CASPubMedWeb of Science®Google Scholar Yun , J.W. ( 2010 ). Possible anti-obesity therapeutics from nature–a review . Phytochemistry 71 ( 14–15 ): 1625 – 1641 . 10.1016/j.phytochem.2010.07.011 CASPubMedWeb of Science®Google Scholar Ngwuluka , N.C. , Abu-Thabit , N.Y. , Uwaezuoke , O.J. et al. ( 2021 ). Natural polymers in micro-and nanoencapsulation for therapeutic and diagnostic applications: part I: lipids and fabrication techniques . In: Nano.Microencapsul. Tech. Appl ., 3 – 54 . Google Scholar Borges , A. , de Freitas , V. , Mateus , N. et al. ( 2020 ). Solid lipid nanoparticles as carriers of natural phenolic compounds . Antioxidants 9 ( 10 ): 998 . 10.3390/antiox9100998 CASPubMedWeb of Science®Google Scholar Hasan , M. , Messaoud , G.B. , Michaux , F. et al. ( 2016 ). Chitosan-coated liposomes encapsulating curcumin: study of lipid–polysaccharide interactions and nanovesicle behavior . RSC Advances 6 ( 51 ): 45290 – 45304 . 10.1039/C6RA05574E CASWeb of Science®Google Scholar Nikam , T.H. , Patil , M.P. , Patil , S.S. et al. ( 2018 ). Nanoemulsion: a brief review on development and application in parenteral drug delivery . Advance Pharmaceutical Journal 3 ( 2 ): 43 – 54 . 10.31024/apj.2018.3.2.2 CASGoogle Scholar McClements , D.J. ( 2020 ). Advances in nanoparticle and microparticle delivery systems for increasing the dispersibility, stability, and bioactivity of phytochemicals . Biotechnology Advances 38 : 107287 . 10.1016/j.biotechadv.2018.08.004 CASPubMedWeb of Science®Google Scholar Li , Y. , Jin , H. , Sun , X. et al. ( 2018 ). Physicochemical properties and storage stability of food protein-stabilized nanoemulsions . Nanomaterials 9 ( 1 ): 25 . https://doi.org/10.3390/nano9010025 . 10.3390/nano9010025 CASPubMedWeb of Science®Google Scholar McClements , D.J. , Decker , E.A. , Park , Y. , and Weiss , J. ( 2009 ). Structural design principles for delivery of bioactive components in nutraceuticals and functional foods . Critical Reviews in Food Science and Nutrition 49 ( 6 ): 577 – 606 . 10.1080/10408390902841529 CASPubMedWeb of Science®Google Scholar Rambaran , T.F. ( 2020 ). Nanopolyphenols: a review of their encapsulation and anti-diabetic effects . SN Applied Sciences 2 ( 8 ): 1335 . 10.1007/s42452-020-3110-8 CASWeb of Science®Google Scholar Das Purkayastha , M. and Manhar , A.K. ( 2016 ). Nanotechnological applications in food packaging, sensors and bioactive delivery systems . Nanoscience in Food and Agriculture 2 : 59 – 128 . 10.1007/978-3-319-39306-3_3 Google Scholar Tsivileva , O. , Pozdnyakov , A. , and Ivanova , A. ( 2021 ). Polymer nanocomposites of selenium biofabricated using fungi . Molecules 26 ( 12 ): 3657 . 10.3390/molecules26123657 CASPubMedWeb of Science®Google Scholar Bhardwaj , M. , Yadav , P. , Vashishth , D. et al. ( 2021 ). A review on obesity management through natural compounds and a green nanomedicine-based approach . Molecules 26 ( 11 ): 3278 . 10.3390/molecules26113278 CASPubMedWeb of Science®Google Scholar Jaradat , N. , Zaid , A.N. , Hussein , F. et al. ( 2017 ). Anti-lipase potential of the organic and aqueous extracts of ten traditional edible and medicinal plants in Palestine; a comparison study with orlistat . Medicines 4 ( 4 ): 89 . https://doi.org/10.3390/medicines4040089 . 10.3390/medicines4040089 Google Scholar Mukhopadhyay , P. , Maity , S. , Mandal , S. et al. ( 2018 ). Preparation, characterization and in vivo evaluation of pH sensitive, safe quercetin-succinylated chitosan-alginate core-shell-corona nanoparticle for diabetes treatment . Carbohydrate Polymers 182 : 42 – 51 . https://doi.org/10.1016/j.carbpol.2017.10.098 . 10.1016/j.carbpol.2017.10.098 CASPubMedWeb of Science®Google Scholar Chitkara , D. , Nikalaje , S.K. , Mittal , A. et al. ( 2012 ). Development of quercetin nanoformulation and in vivo evaluation using streptozotocin induced diabetic rat model . Drug Delivery and Translational Research 2 : 112 – 123 . https://doi.org/10.1007/s13346-012-0063-5 . 10.1007/s13346-012-0063-5 CASPubMedWeb of Science®Google Scholar Joiner-Bey , H. ( 2010 ). The Healing Power of Flax: How Nature's Richest Source of Omega-3 Fatty Acids Can Help to Heal, Prevent and Reverse Arthritis . SCB Distributors . Google Scholar Harishkumar , R. , Hans , S. , Stanton , J.E. et al. ( 2022 ). Targeting the platelet-activating factor receptor (PAF-R): antithrombotic and anti-atherosclerotic nutrients . Nutrients 14 ( 20 ): 4414 . 10.3390/nu14204414 CASPubMedWeb of Science®Google Scholar Zhang , J. , Almoallim , H.S. , Alharbi , S.A. , and Yang , B. ( 2021 ). Anti-atherosclerotic activity of Betulinic acid loaded polyvinyl alcohol/methylacrylate grafted lignin polymer in high fat diet induced atherosclerosis model rats . Arabian Journal of Chemistry 14 ( 2 ): 102934 . 10.1016/j.arabjc.2020.102934 CASWeb of Science®Google Scholar Davatgaran-Taghipour , Y. , Masoomzadeh , S. , Farzaei , M.H. et al. ( 2017 ). Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective . International Journal of Nanomedicine 12 : 2689 . 10.2147/IJN.S131973 CASPubMedWeb of Science®Google Scholar Bhattacharyya , S.S. , Paul , S. , De , A. et al. ( 2011 ). Poly (lactide-co-glycolide) acid nanoencapsulation of a synthetic coumarin: cytotoxicity and bio-distribution in mice, in cancer cell line and interaction with calf thymus DNA as target . Toxicology and Applied Pharmacology 253 ( 3 ): 270 – 281 . 10.1016/j.taap.2011.04.010 CASPubMedWeb of Science®Google Scholar Phan , Q.T. , Le , M.H. , Le , T.T.H. et al. ( 2016 ). Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA-PEG micellar nano systems with various PLA: PEG ratios . International Journal of Pharmaceutics 507 ( 1–2 ): 32 – 40 . 10.1016/j.ijpharm.2016.05.003 CASPubMedWeb of Science®Google Scholar Liu , A. , Wang , W. , Fang , H. et al. ( 2015 ). Baicalein protects against polymicrobial sepsis-induced liver injury via inhibition of inflammation and apoptosis in mice . European Journal of Pharmacology 748 : 45 – 53 . 10.1016/j.ejphar.2014.12.014 CASPubMedWeb of Science®Google Scholar de Oliveira , G.V. , Volino-Souza , M. , Dos Santos , K.S. et al. ( 2021 ). A perspective on the use of polyphenols nano-formulation as a nutritional strategy to manage the symptoms of the infected patient with COVID-19 . The Research, Society and Development 10 ( 13 ): e400101321471 – e400101321471 . 10.33448/rsd-v10i13.21471 Google Scholar Valizadeh , H. , Abdolmohammadi-Vahid , S. , Danshina , S. et al. ( 2020 ). Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients . Int.Immunopharmacol 89 : 107088 . 10.1016/j.intimp.2020.107088 CASPubMedWeb of Science®Google Scholar Zhang , Z. , Qiu , C. , Li , X. et al. ( 2021 ). Advances in research on interactions between polyphenols and biology-based nano-delivery systems and their applications in improving the bioavailability of polyphenols . Trends in Food Science and Technology 116 : 492 – 500 . 10.1016/j.tifs.2021.08.009 CASWeb of Science®Google Scholar Wang , W. , Xue , C. , and Mao , X. ( 2020 ). Chitosan: structural modification, biological activity and application . International Journal of Biological Macromolecules 164 : 4532 – 4546 . 10.1016/j.ijbiomac.2020.09.042 CASPubMedWeb of Science®Google Scholar Abd El-Hack , M.E. , El-Saadony , M.T. , Swelum , A.A. et al. ( 2021 ). Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability . Journal of the Science of Food and Agriculture 101 ( 14 ): 5747 – 5762 . 10.1002/jsfa.11372 CASPubMedWeb of Science®Google Scholar Esfanjani , A.F. and Jafari , S.M. ( 2016 ). Biopolymer nano-particles and natural nano-carriers for nano-encapsulation of phenolic compounds . Colloids and Surfaces B 146 : 532 – 543 . 10.1016/j.colsurfb.2016.06.053 PubMedWeb of Science®Google Scholar Lozano-Pérez , A.A. , Rivero , H.C. , Hernández , M.D.C.P. et al. ( 2017 ). Silk fibroin nanoparticles: efficient vehicles for the natural antioxidant quercetin . International Journal of Pharmaceutics 518 ( 1–2 ): 11 – 19 . 10.1016/j.ijpharm.2016.12.046 CASPubMedWeb of Science®Google Scholar Ozkan , G. , Kostka , T. , Esatbeyoglu , T. , and Capanoglu , E. ( 2020 ). Effects of lipid-based encapsulation on the bioaccessibility and bioavailability of phenolic compounds . Molecules 25 ( 23 ): 5545 . https://doi.org/10.3390/molecules25235545 . 10.3390/molecules25235545 CASPubMedWeb of Science®Google Scholar Li , Z. and Lin , Z. ( 2021 ). Recent advances in polysaccharide-based hydrogels for synthesis and applications . Aggregate 2 ( 2 ): 21 . 10.1002/agt2.21 Google Scholar Nahum , V. and Domb , A.J. ( 2021 ). Recent developments in solid lipid microparticles for food ingredients delivery . Foods 11. 10 ( 2 ): 400 . 10.3390/foods10020400 CASPubMedWeb of Science®Google Scholar Teskač , K. and Kristl , J. ( 2010 ). The evidence for solid lipid nanoparticles mediated cell uptake of resveratrol . International Journal of Pharmaceutics 390 ( 1 ): 61 – 69 . https://doi.org/10.1016/j.ijpharm.2009.10.011 . 10.1016/j.ijpharm.2009.10.011 CASPubMedWeb of Science®Google Scholar Li , H. , Zhao , X. , Ma , Y. et al. ( 2009 ). Enhancement of gastrointestinal absorption of quercetin by solid lipid nanoparticles . The Journal of Controlled Release 133 ( 3 ): 238 – 244 . 10.1016/j.jconrel.2008.10.002 CASPubMedWeb of Science®Google Scholar Yang , S. , Liu , L. , Han , J. , and Tang , Y. ( 2020 ). Encapsulating plant ingredients for dermocosmetic application: an updated review of delivery systems and characterization techniques . International Journal of Cosmetic Science 42 ( 1 ): 16 – 28 . 10.1111/ics.12592 CASPubMedWeb of Science®Google Scholar Gonçalves , R.F. , Martins , J.T. , Duarte , C.M. et al. ( 2018 ). Advances in nutraceutical delivery systems: from formulation design for bioavailability enhancement to efficacy and safety evaluation . Trends in Food Science and Technology 78 : 270 – 291 . https://doi.org/10.3390/molecules26092540 . 10.1016/j.tifs.2018.06.011 CASWeb of Science®Google Scholar Zuidam , N.J. and Shimoni , E. ( 2010 ). Overview of microencapsulates for use in food products or processes and methods to make them . Encapsulation Technologies for Active Food Ingredients and Food Processing 410 : 3 – 29 . 10.1007/978-1-4419-1008-0_2 Google Scholar Dai , L. , Zhou , H. , Wei , Y. et al. ( 2019 ). Curcumin encapsulation in zein-rhamnolipid composite nanoparticles using a pH-driven method . Food Hydrocolloids 93 : 342 – 350 . 10.1016/j.foodhyd.2019.02.041 CASWeb of Science®Google Scholar Dutta , D. and Sit , N. ( 2022 ). Application of natural extracts as active ingredient in biopolymer-based packaging systems . The Journal of Food Science and Technology 1 – 15 . https://doi.org/10.1007/s13197-022-05474-5 . 10.1007/s13197-022-05474-5 Google Scholar Yin , C. , Cheng , L. , Zhang , X. , and Wu , Z. ( 2020 ). Nanotechnology improves delivery efficiency and bioavailability of tea polyphenols . Journal of Food Biochemistry 44 ( 9 ): e13380 . 10.1111/jfbc.13380 CASPubMedWeb of Science®Google Scholar Polyphenols: Food, Nutraceutical, and Nanotherapeutic Applications ReferencesRelatedInformation
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
玲玲完成签到,获得积分10
刚刚
lihua发布了新的文献求助10
刚刚
Shengkun发布了新的文献求助10
1秒前
oopstom发布了新的文献求助10
1秒前
Shawn发布了新的文献求助10
1秒前
1秒前
桐桐应助adastra采纳,获得10
2秒前
zho发布了新的文献求助10
2秒前
田様应助小小怪采纳,获得10
2秒前
2秒前
3秒前
yoyo完成签到,获得积分10
3秒前
隐形曼青应助吴世勋采纳,获得10
3秒前
4秒前
5秒前
Mr.Jian完成签到,获得积分0
5秒前
科研通AI6应助诩阽采纳,获得10
6秒前
肖易应助DTT采纳,获得10
6秒前
龇牙鲨鱼完成签到 ,获得积分10
6秒前
浅听风吟完成签到,获得积分10
7秒前
FashionBoy应助张小慢采纳,获得10
7秒前
7秒前
7秒前
田様应助SSSSCCCCIIII采纳,获得10
7秒前
开放灭绝发布了新的文献求助10
7秒前
8秒前
彭于晏应助晚安采纳,获得10
8秒前
哭泣又柔发布了新的文献求助10
8秒前
8秒前
冲冲冲发布了新的文献求助10
8秒前
香蕉觅云应助Shawn采纳,获得10
8秒前
lihua完成签到,获得积分20
9秒前
如来发布了新的文献求助20
9秒前
9秒前
10秒前
erdongsir发布了新的文献求助10
10秒前
不想干活应助yzbbb采纳,获得10
11秒前
善学以致用应助人沐采纳,获得10
12秒前
量子星尘发布了新的文献求助20
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Why America Can't Retrench (And How it Might) 400
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4615303
求助须知:如何正确求助?哪些是违规求助? 4019099
关于积分的说明 12440991
捐赠科研通 3702052
什么是DOI,文献DOI怎么找? 2041414
邀请新用户注册赠送积分活动 1074129
科研通“疑难数据库(出版商)”最低求助积分说明 957743