Multi-scale SE-residual network with transformer encoder for myocardial infarction classification

心跳 计算机科学 模式识别(心理学) 人工智能 特征提取 编码器 残余物 变压器 小波变换 数据挖掘 小波 算法 电压 工程类 计算机安全 电气工程 操作系统
作者
Qingyu Yao,Luming Zhang,Wenguang Zheng,Yuxi Zhou,Yingyuan Xiao
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:149: 110919-110919 被引量:2
标识
DOI:10.1016/j.asoc.2023.110919
摘要

In recent years, there has been an increase in the number of deaths caused by heart disease. The design of computer-aided systems for the diagnosis of heart diseases, especially myocardial infarction (MI), has become a hot topic. The diagnosis of MI is a classification task. Electrocardiogram (ECG) is one of the most important tools for diagnosing heart disease. ECG signals are classified into corresponding MI categories based on their extracted features. Thus, the diagnosis of MI depends on the feature extraction of the ECG signal. Because signal processing methods, such as wavelet transform, may not effectively extract hidden features, researchers nowadays turn to using convolutional neural networks to solve the problem of hidden feature extraction. However, this approach ignores the role of temporal information. we proposed a new network called Multi-scale SE-Residual Network with Transformer encoder (MRTNet) to extract hidden features and temporal information features better. The data processed are localized to heartbeat units based on the way cardiologists diagnose myocardial infarction. Inspired by multi-scale learning, the sampling module was designed to acquire heartbeat units at different scales. We provided a processing model for multi-scale data, called the feature extraction module. The residual network with SE block and Customized Pooling Component (CPC) was used to extract global and local features of the heartbeat units. A Transformer encoder was used to extract the common features of the previous module's output. The common features at different scales were fused to provide the basis for the classification task. The experiment was conducted on the public PTB-XL dataset. MRTNet achieved a higher accuracy and F1 score than other models by approximately 2%. Furthermore, MRTNet demonstrated a superior AUC of approximately 0.77. It is a superior classifier when compared to other models. The results demonstrate the effectiveness of the designed multi-scale architecture. And it provides a way into exploring further potential information from ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
科研通AI5应助波波采纳,获得20
1秒前
琦琦完成签到,获得积分10
2秒前
张张完成签到,获得积分10
2秒前
2秒前
gfbh发布了新的文献求助10
3秒前
猪猪hero发布了新的文献求助10
4秒前
4秒前
DKF发布了新的文献求助10
5秒前
ID8发布了新的文献求助10
6秒前
JK2022完成签到 ,获得积分10
6秒前
默默雨梅完成签到,获得积分10
6秒前
7秒前
kkking发布了新的文献求助30
7秒前
menyanyan发布了新的文献求助10
8秒前
黄徐发布了新的文献求助10
8秒前
wwww完成签到,获得积分20
8秒前
8秒前
9秒前
赘婿应助默默雨梅采纳,获得10
10秒前
skps970110发布了新的文献求助10
11秒前
tangyuan发布了新的文献求助10
12秒前
活泼蜜蜂完成签到,获得积分10
12秒前
科研通AI5应助wwww采纳,获得30
12秒前
14秒前
ZWTH完成签到,获得积分10
15秒前
melody完成签到,获得积分10
16秒前
17秒前
shinble完成签到,获得积分10
17秒前
甜甜玫瑰发布了新的文献求助10
19秒前
daisy应助大约在冬季采纳,获得10
19秒前
20秒前
辛勤大叔完成签到 ,获得积分10
20秒前
20秒前
明亮惜灵完成签到,获得积分10
21秒前
lin发布了新的文献求助10
21秒前
21秒前
明亮惜灵发布了新的文献求助10
24秒前
24秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3791796
求助须知:如何正确求助?哪些是违规求助? 3336103
关于积分的说明 10278863
捐赠科研通 3052741
什么是DOI,文献DOI怎么找? 1675319
邀请新用户注册赠送积分活动 803360
科研通“疑难数据库(出版商)”最低求助积分说明 761178