Multi-scale SE-residual network with transformer encoder for myocardial infarction classification

心跳 计算机科学 模式识别(心理学) 人工智能 特征提取 编码器 残余物 变压器 小波变换 数据挖掘 小波 算法 电压 工程类 计算机安全 电气工程 操作系统
作者
Qingyu Yao,Luming Zhang,Wenguang Zheng,Yuxi Zhou,Yingyuan Xiao
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:149: 110919-110919 被引量:15
标识
DOI:10.1016/j.asoc.2023.110919
摘要

In recent years, there has been an increase in the number of deaths caused by heart disease. The design of computer-aided systems for the diagnosis of heart diseases, especially myocardial infarction (MI), has become a hot topic. The diagnosis of MI is a classification task. Electrocardiogram (ECG) is one of the most important tools for diagnosing heart disease. ECG signals are classified into corresponding MI categories based on their extracted features. Thus, the diagnosis of MI depends on the feature extraction of the ECG signal. Because signal processing methods, such as wavelet transform, may not effectively extract hidden features, researchers nowadays turn to using convolutional neural networks to solve the problem of hidden feature extraction. However, this approach ignores the role of temporal information. we proposed a new network called Multi-scale SE-Residual Network with Transformer encoder (MRTNet) to extract hidden features and temporal information features better. The data processed are localized to heartbeat units based on the way cardiologists diagnose myocardial infarction. Inspired by multi-scale learning, the sampling module was designed to acquire heartbeat units at different scales. We provided a processing model for multi-scale data, called the feature extraction module. The residual network with SE block and Customized Pooling Component (CPC) was used to extract global and local features of the heartbeat units. A Transformer encoder was used to extract the common features of the previous module's output. The common features at different scales were fused to provide the basis for the classification task. The experiment was conducted on the public PTB-XL dataset. MRTNet achieved a higher accuracy and F1 score than other models by approximately 2%. Furthermore, MRTNet demonstrated a superior AUC of approximately 0.77. It is a superior classifier when compared to other models. The results demonstrate the effectiveness of the designed multi-scale architecture. And it provides a way into exploring further potential information from ECG signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿毛怪完成签到,获得积分10
1秒前
可可完成签到,获得积分10
1秒前
2秒前
李健的粉丝团团长应助lx采纳,获得10
3秒前
SYLH应助李娜采纳,获得10
3秒前
3秒前
崔崔发布了新的文献求助10
5秒前
隐形曼青应助无足鸟采纳,获得10
5秒前
小时完成签到 ,获得积分10
6秒前
南风发布了新的文献求助10
7秒前
失眠的霸发布了新的文献求助10
9秒前
11秒前
11秒前
阿斌仔发布了新的文献求助10
12秒前
13秒前
香蕉觅云应助失眠的霸采纳,获得10
13秒前
小时关注了科研通微信公众号
14秒前
楚楚发布了新的文献求助10
14秒前
letter完成签到 ,获得积分10
15秒前
双儿发布了新的文献求助20
17秒前
大模型应助淋漓尽致采纳,获得10
19秒前
19秒前
温水发布了新的文献求助10
19秒前
蛋挞没有挞完成签到,获得积分10
20秒前
CipherSage应助着急的棉花糖采纳,获得10
20秒前
Autumn完成签到,获得积分10
21秒前
李健应助Moshiqi采纳,获得30
22秒前
23秒前
23秒前
Autumn发布了新的文献求助10
23秒前
鳗鱼海安完成签到,获得积分10
24秒前
24秒前
ccCherub发布了新的文献求助10
24秒前
可可发布了新的文献求助10
27秒前
28秒前
Wing发布了新的文献求助10
28秒前
ainan发布了新的文献求助10
29秒前
我是老大应助myz采纳,获得10
30秒前
鳗鱼海安发布了新的文献求助10
31秒前
32秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4035654
求助须知:如何正确求助?哪些是违规求助? 3573990
关于积分的说明 11371203
捐赠科研通 3304070
什么是DOI,文献DOI怎么找? 1818783
邀请新用户注册赠送积分活动 892385
科研通“疑难数据库(出版商)”最低求助积分说明 814797