亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A dynamic machine learning model for prediction of NAFLD in a health checkup population: A longitudinal study

布里氏评分 接收机工作特性 机器学习 医学 人工智能 特征选择 逐步回归 逻辑回归 人口 统计 计算机科学 数据挖掘 数学 环境卫生
作者
Yuhan Deng,Yuan Ma,Jingzhu Fu,Xiaona Wang,Canqing Yu,Jun Lv,Sailimai Man,Bo Wang,Liming Li
出处
期刊:Heliyon [Elsevier BV]
卷期号:9 (8): e18758-e18758 被引量:7
标识
DOI:10.1016/j.heliyon.2023.e18758
摘要

Non-alcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. Currently, most NAFLD prediction models are diagnostic models based on cross-sectional data, which failed to provide early identification or clarify causal relationships. We aimed to use time-series deep learning models with longitudinal health checkup records to predict the onset of NAFLD in the future, and update the model stepwise by incorporating new checkup records to achieve dynamic prediction.10,493 participants with over 6 health checkup records from Beijing MJ Health Screening Center were included to conduct a retrospective cohort study, in which the constantly updated initial 5 checkup data were incorporated stepwise to predict the risk of NAFLD at and after their sixth health checkups. A total of 33 variables were considered, consisting of demographic characteristics, medical history, lifestyle, physical examinations, and laboratory tests. L1-penalized logistic regression (LR) was used for feature selection. The long short-term memory (LSTM) algorithm was introduced for model development, and five-fold cross-validation was conducted to tune and choose optimal hyperparameters. Both internal validation and external validation were conducted, using the 20% randomly divided holdout test dataset and previously unseen data from Shanghai MJ Health Screening Center, respectively, to evaluate model performance. The evaluation metrics included area under the receiver operating characteristic curve (AUROC), sensitivity, specificity, Brier score, and decision curve. Bootstrap sampling was implemented to generate 95% confidence intervals of all the metrics. Finally, the Shapley additive explanations (SHAP) algorithm was applied in the holdout test dataset for model interpretability to obtain time-specific and sample-specific contributions of each feature.Among the 10,493 participants, 1662 (15.84%) were diagnosed with NAFLD at and after their sixth health checkups. The predictive performance of the deep learning model in the internal validation dataset improved over the incorporation of the checkups, with AUROC increasing from 0.729 (95% CI: 0.698,0.760) at baseline to 0.818 (95% CI: 0.798,0.844) when consecutive 5 checkups were included. The external validation dataset, containing 1728 participants, was used to verify the results, in which AUROC increased from 0.700 (95% CI: 0.657,0.740) with only the first checkups to 0.792 (95% CI: 0.758,0.825) with all five. The results of feature significance showed that body fat percentage, alanine transaminase (ALT), and uric acid owned the greatest impact on the outcome, time-specific, individual-specific and dynamic feature contributions were also produced for model interpretability.A dynamic prediction model was successfully established in our study, and the prediction capability kept improving with the renewal of the latest checkup records. In addition, we identified key features associated with the onset of NAFLD, making it possible to optimize the prevention and control strategies of the disease in the general population.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助狮子采纳,获得10
9秒前
37秒前
科研通AI2S应助科研通管家采纳,获得10
40秒前
科研通AI2S应助科研通管家采纳,获得10
41秒前
52秒前
55秒前
SCI发布了新的文献求助10
59秒前
1分钟前
SCI完成签到,获得积分10
1分钟前
狮子发布了新的文献求助10
1分钟前
AMENG完成签到,获得积分10
1分钟前
1分钟前
Rn完成签到 ,获得积分10
1分钟前
科研通AI5应助狮子采纳,获得10
1分钟前
斯文败类应助未来可期采纳,获得10
1分钟前
1分钟前
狮子发布了新的文献求助10
1分钟前
紫熊完成签到,获得积分10
2分钟前
研友_VZG7GZ应助狮子采纳,获得30
2分钟前
2分钟前
未来可期发布了新的文献求助10
2分钟前
未来可期完成签到,获得积分10
2分钟前
共享精神应助科研通管家采纳,获得10
2分钟前
你好完成签到 ,获得积分0
3分钟前
3分钟前
3分钟前
狮子发布了新的文献求助30
3分钟前
顺利白竹完成签到 ,获得积分10
3分钟前
火星完成签到 ,获得积分10
4分钟前
4分钟前
田様应助chenqian采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
4分钟前
chenqian发布了新的文献求助10
4分钟前
chenqian完成签到,获得积分20
5分钟前
张翰林发布了新的文献求助10
5分钟前
5分钟前
tlh完成签到 ,获得积分10
5分钟前
ding应助xyliu采纳,获得10
5分钟前
高分求助中
The Oxford Encyclopedia of the History of Modern Psychology 1500
Parametric Random Vibration 600
城市流域产汇流机理及其驱动要素研究—以北京市为例 500
Plasmonics 500
Drug distribution in mammals 500
Building Quantum Computers 458
Happiness in the Nordic World 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3857311
求助须知:如何正确求助?哪些是违规求助? 3399733
关于积分的说明 10613422
捐赠科研通 3121973
什么是DOI,文献DOI怎么找? 1721183
邀请新用户注册赠送积分活动 828920
科研通“疑难数据库(出版商)”最低求助积分说明 777928