斑点图案
光学
散斑成像
预处理器
人工智能
一般化
深度学习
散斑噪声
计算机科学
人工神经网络
物理
可扩展性
算法
模式识别(心理学)
数学
数据库
数学分析
作者
Zhiwei Tang,Fei Wang,Zhenfeng Fu,Shanshan Zheng,Ying Jin,Guohai Situ
出处
期刊:Optics Letters
[Optica Publishing Group]
日期:2023-03-24
卷期号:48 (9): 2285-2285
被引量:13
摘要
In this Letter we present a physics-enhanced deep learning approach for speckle correlation imaging (SCI), i.e., DeepSCI. DeepSCI incorporates the theoretical model of SCI into both the training and test stages of a neural network to achieve interpretable data preprocessing and model-driven fine-tuning, allowing the full use of data and physics priors. It can accurately reconstruct the image from the speckle pattern and is highly scalable to both medium perturbations and domain shifts. Our experimental results demonstrate the suitability and effectiveness of DeepSCI for solving the problem of limited generalization generally encountered in data-driven approaches.
科研通智能强力驱动
Strongly Powered by AbleSci AI