Does Generative Artificial Intelligence Improve Students’ Higher-Order Thinking? A Meta-Analysis Based on 29 Experiments and Quasi-Experiments

作者
Yan Zhao,Zhonghua Sun,Qiang Jiang
出处
期刊:Journal of Intelligence [MDPI AG]
卷期号:13 (12): 160-160
标识
DOI:10.3390/jintelligence13120160
摘要

The widespread application of Generative Artificial Intelligence (Gen-AI) is transforming educational practices and driving pedagogical innovation. While cultivating higher-order thinking (HOT) represents a central educational goal, its achievement remains an ongoing challenge. Current evidence regarding the impact of Gen-AI on HOT is relatively fragmented, lacking systematic integration, particularly in the analysis of moderating variables. To address this gap, a meta-analysis approach was employed, integrating data from 29 experimental and quasi-experimental studies to quantitatively assess the overall impact of Gen-AI on learners’ HOT and to examine potential moderating factors. The analysis revealed that Gen-AI exerts a moderate positive effect on HOT, with the most significant improvement observed in problem-solving abilities, followed by critical thinking, while its effect on creativity is relatively limited. Moderation analyses further indicated that the impact of Gen-AI is significantly influenced by experimental duration and learners’ self-regulated learning (SRL) abilities: effects were strongest when interventions lasted 8–16 weeks, and learners with higher SRL capacities benefited more substantially. Based on the research findings, this study proposed that Gen-AI should be systematically integrated as a targeted instructional tool to foster HOT. Medium- to long-term interventions (8–16 weeks) are recommended to enhance learners’ problem-solving and critical thinking abilities. At the same time, effective approaches should also be explored to promote creative thinking through Gen-AI within existing pedagogical frameworks. Furthermore, individual learner differences should be accounted for by adopting dynamic and personalized scaffolding strategies to foster SRL, thereby maximizing the educational potential of Gen-AI in cultivating innovative talents.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舟遥遥完成签到,获得积分10
1秒前
5秒前
7秒前
LEO2025完成签到,获得积分10
7秒前
量子星尘发布了新的文献求助10
10秒前
qs完成签到,获得积分10
11秒前
鲸鱼打滚完成签到 ,获得积分10
11秒前
12秒前
朽木完成签到,获得积分10
12秒前
14秒前
zhang完成签到 ,获得积分10
15秒前
张琳完成签到 ,获得积分10
16秒前
昏睡的妙梦完成签到,获得积分10
17秒前
17秒前
lm完成签到,获得积分10
17秒前
马铃薯完成签到,获得积分10
19秒前
王修完成签到,获得积分10
20秒前
哈哈哈完成签到 ,获得积分10
20秒前
斯文败类应助孤独的冰彤采纳,获得10
20秒前
小茵茵完成签到,获得积分10
21秒前
悄悄完成签到 ,获得积分10
22秒前
英俊的馒头完成签到,获得积分10
22秒前
跳跃的滑板完成签到,获得积分10
22秒前
666发布了新的文献求助10
22秒前
cxxxx完成签到,获得积分10
23秒前
小启发布了新的文献求助10
23秒前
布吉岛呀完成签到 ,获得积分10
23秒前
吴老师完成签到 ,获得积分10
26秒前
fuguier完成签到,获得积分10
26秒前
车厘子完成签到 ,获得积分10
27秒前
痞子毛完成签到,获得积分10
28秒前
Accpted河豚完成签到,获得积分10
28秒前
糖糖完成签到 ,获得积分10
29秒前
RRRer完成签到,获得积分10
30秒前
葉落葉飄完成签到,获得积分10
30秒前
31秒前
yangsi完成签到 ,获得积分10
31秒前
莫三颜完成签到 ,获得积分10
32秒前
晚晚完成签到 ,获得积分10
32秒前
念梦发布了新的文献求助200
33秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599949
求助须知:如何正确求助?哪些是违规求助? 4685756
关于积分的说明 14839094
捐赠科研通 4674348
什么是DOI,文献DOI怎么找? 2538438
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086