Modeling Driving States Based on Behavior Spectrum Construction Considering Tunnel Environmental Factors

作者
Yu Zhang,Ying Yan,Hongting Wang,Huazhi Yuan,Hongliang Ding
出处
期刊:Transportation Research Record [SAGE]
标识
DOI:10.1177/03611981251380270
摘要

Modeling and analyzing tunnel driving behavior provides insights into driving behavior characteristics and state identification. Previous studies have primarily extracted single or multiple driving behavior features, neglecting their overall time-varied patterns. This study aimed to develop a driving behavior spectrum that considers the coupling effect of driving behavior time series patterns, drivers’ physiological characteristics, and multidimensional environment factors encompassing acoustic, lighting, traffic volume, and road segment type, and to establish a driving state identification model in tunnels. First, a real vehicle test was conducted to collect data on driving behavior, drivers’ physiology, and tunnel environment, from which 13 variables were extracted. A fuzzy comprehensive evaluation method was then applied to assess the complexity of the tunnel environment. Second, the driving behavior spectrum was created for each driver by introducing a single feature recurrence matrix spectrum radius (SRMSR). Then, the hidden Markov model and the criteria importance through intercriteria correlation weighting method were employed to evaluate and classify the driving states. Finally, the composite feature recurrence matrix spectrum radius (CRMSR) based on SRMSR was derived using the Hadamard product and employed as an input variable for a Light Gradient Boosting Machine driving state identification model. The results indicated that the proposed CRMSR was effective in identifying tunnel driving states, enhancing model accuracy as an input. In addition, the proposed method can pinpoint the critical tunnel zones requiring enhanced safety design based on the identification of driving states. It can be used to monitor and identify risky driving states, providing a data foundation for early warning systems and aiding in tunnel design to enhance overall safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
个性松完成签到 ,获得积分10
1秒前
凉面完成签到 ,获得积分10
1秒前
量子星尘发布了新的文献求助10
6秒前
圈地自萌X完成签到 ,获得积分10
6秒前
6昂完成签到 ,获得积分10
10秒前
风雨晴鸿完成签到 ,获得积分10
11秒前
刚子完成签到 ,获得积分10
11秒前
米鼓完成签到 ,获得积分10
13秒前
wang完成签到,获得积分10
13秒前
FEOROCHA完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
15秒前
量子星尘发布了新的文献求助10
16秒前
zxq完成签到 ,获得积分10
22秒前
wxh完成签到 ,获得积分10
22秒前
jiuzhege完成签到 ,获得积分10
24秒前
量子星尘发布了新的文献求助10
30秒前
量子星尘发布了新的文献求助10
33秒前
科研通AI6应助科研通管家采纳,获得20
36秒前
彭于晏应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
殷勤的紫槐应助科研通管家采纳,获得200
36秒前
36秒前
36秒前
芳菲依旧应助科研通管家采纳,获得30
36秒前
小二郎应助科研通管家采纳,获得10
36秒前
李爱国应助科研通管家采纳,获得10
36秒前
zyb完成签到 ,获得积分10
44秒前
量子星尘发布了新的文献求助10
45秒前
大卫戴完成签到 ,获得积分10
45秒前
小钥匙完成签到 ,获得积分10
49秒前
2025顺顺利利完成签到 ,获得积分10
49秒前
Draymond完成签到 ,获得积分10
52秒前
量子星尘发布了新的文献求助10
54秒前
量子星尘发布了新的文献求助10
57秒前
温暖完成签到 ,获得积分10
1分钟前
kanong完成签到,获得积分0
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Feng完成签到 ,获得积分10
1分钟前
阿良完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5706795
求助须知:如何正确求助?哪些是违规求助? 5178417
关于积分的说明 15247462
捐赠科研通 4860222
什么是DOI,文献DOI怎么找? 2608490
邀请新用户注册赠送积分活动 1559351
关于科研通互助平台的介绍 1517193