清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Developing a Community-Specific Daily Weather Health Risk Index Across Australia Using Explainable Machine Learning

作者
Zhaoyuan Li,Rongbin Xu,Wenzhong Huang,Shuang Zhou,Zhihu Xu,Yanming Liu,Yunfei Xing,Zhengyu Yang,Junwang Huang,Botian Chen,Shanshan Li,Yuming Guo
出处
期刊:Environmental Science & Technology [American Chemical Society]
卷期号:59 (45): 24268-24278
标识
DOI:10.1021/acs.est.5c07211
摘要

Weather conditions are closely related to human health, yet effective methods for communicating the joint health risks associated with weather-related factors remain limited, especially when accounting for the complex interactions among weather exposures. To address this gap, we collected daily mortality and meteorological data (temperature, relative humidity, surface pressure, wind speed, rainfall and ultraviolet B radiation) between 2009 and 2019 for each community across Australia. We employed an advanced explainable machine learning framework integrating the eXtreme Gradient Boosting (XGBoost) model with Shapley Additive exPlanations (SHAP) algorithm to quantify the joint health risks associated with the meteorological factors and constructed a daily weather-health risk index (WHRI) for each Statistical Area Level 3 community across Australia. Among the examined weather-related factors, temperature was the dominant contributing factor for mortality risks. Communities in southern Australia generally had greater weather-related mortality risks and higher WHRI compared to those in northern Australia. Evident seasonal patterns were observed for WHRI, with peaks occurring in winter and its lowest point occurring in summer. These findings highlight the spatiotemporal heterogeneity of weather-related health risks and emphasize the need for developing a WHRI to capture and quantify the dynamic risk patterns. The integration of WHRI into public health dashboards could effectively inform the empirical community-specific health risks in real time, thereby supporting evidence-based, tiered interventions for adverse weather conditions in a changing climate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zz321完成签到,获得积分10
39秒前
顺shun完成签到 ,获得积分10
54秒前
BowieHuang应助科研通管家采纳,获得10
54秒前
蜡笔小z完成签到 ,获得积分10
1分钟前
会会完成签到 ,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
启程完成签到 ,获得积分10
1分钟前
1分钟前
Trevor2021发布了新的文献求助10
1分钟前
piao完成签到 ,获得积分10
2分钟前
惊鸿H完成签到 ,获得积分10
2分钟前
xiaoyi完成签到 ,获得积分10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
ceeray23应助科研通管家采纳,获得10
2分钟前
小吕同学完成签到 ,获得积分10
2分钟前
3分钟前
3分钟前
ceeray23发布了新的文献求助20
3分钟前
juan完成签到 ,获得积分0
3分钟前
迅速千愁完成签到 ,获得积分10
3分钟前
3分钟前
jiabu完成签到 ,获得积分10
3分钟前
xmf发布了新的文献求助10
3分钟前
3分钟前
yangpengbo完成签到,获得积分20
3分钟前
浚稚完成签到 ,获得积分10
4分钟前
yangpengbo发布了新的文献求助10
4分钟前
研友_LN25rL完成签到,获得积分10
4分钟前
善学以致用应助青山采纳,获得10
4分钟前
英俊的铭应助yangpengbo采纳,获得10
4分钟前
ahh完成签到 ,获得积分10
4分钟前
ceeray23应助科研通管家采纳,获得20
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
ceeray23应助科研通管家采纳,获得10
4分钟前
一只不受管束的小狸Miao完成签到 ,获得积分10
5分钟前
洗衣液谢完成签到 ,获得积分10
5分钟前
黄乐丹完成签到 ,获得积分10
5分钟前
Ava应助xmf采纳,获得10
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599887
求助须知:如何正确求助?哪些是违规求助? 4685645
关于积分的说明 14838739
捐赠科研通 4672983
什么是DOI,文献DOI怎么找? 2538369
邀请新用户注册赠送积分活动 1505574
关于科研通互助平台的介绍 1470965