Cooperative UAV Resource Allocation and Task Offloading in Hierarchical Aerial Computing Systems: A MAPPO-Based Approach

计算机科学 分布式计算 资源配置 资源管理(计算) 任务(项目管理) 处理器调度 资源(消歧) 实时计算 计算机网络 经济 管理
作者
Hongyue Kang,Xiaolin Chang,Jelena Mišić,Vojislav B. Mišić,Junchao Fan,Yating Liu
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:10 (12): 10497-10509 被引量:62
标识
DOI:10.1109/jiot.2023.3240173
摘要

This article investigates a hierarchical aerial computing system, where both high-altitude platforms (HAPs) and unmanned aerial vehicles (UAVs) provision computation services for ground devices (GDs). Different from the existing works which ignored UAV task offloading to HAPs and suffered long transmission delay between HAPs and GDs, in our system, UAVs are responsible for collecting the tasks generated by GDs. Considering limited resources and constrained coverage, UAVs need to cooperatively allocate their resources (including spectrum, caching, and computing) to GDs. After collecting GD tasks, UAVs are allowed to offload part of these tasks to the HAP, in order to minimize task processing delay and then better satisfy GD delay requirement. Our objective is to maximize the amount of computed tasks while satisfying tasks' heterogeneous Quality-of-Service (QoS) requirements through the joint optimization of UAV resource allocation and task offloading. To this end, a joint optimization problem is first formulated as a partially observable Markov decision process (POMDP) under the constraints of available resources, UAV energy, and collision avoidance. Then, we design a multiagent proximal policy optimization (MAPPO)-based algorithm to solve the optimization problem. By introducing the centralized training with decentralized execution framework, UAVs acting as agents can cooperatively make decisions on GDs association, resource allocation, and task offloading according to their local observations. In addition, state normalization and action mask are also adopted to improve training efficiency. Experimental results verify the efficiency of the proposed algorithm and the system performance is also analyzed by the numerical results.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助小何采纳,获得20
2秒前
畅快的雅青完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
5秒前
szp完成签到 ,获得积分10
5秒前
漂亮紫完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
6秒前
6秒前
缥缈浩然发布了新的文献求助10
7秒前
8秒前
科目三应助翁利芳采纳,获得10
8秒前
十米发布了新的文献求助10
8秒前
9秒前
量子星尘发布了新的文献求助20
9秒前
hanhan发布了新的文献求助10
10秒前
10秒前
Npccc发布了新的文献求助10
10秒前
北栀发布了新的文献求助30
11秒前
11秒前
量子星尘发布了新的文献求助10
12秒前
小二郎应助wocao采纳,获得10
12秒前
12秒前
lisarashen发布了新的文献求助20
13秒前
ding应助无语的又夏采纳,获得10
14秒前
14秒前
14秒前
忆年慧逝发布了新的文献求助10
14秒前
H华ua应助着急的傲菡采纳,获得30
14秒前
SA发布了新的文献求助10
15秒前
缥缈浩然完成签到,获得积分10
15秒前
深情安青应助xinyuzhang采纳,获得10
17秒前
17秒前
17秒前
19秒前
蜂蜜发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Nuclear Fuel Behaviour under RIA Conditions 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Higher taxa of Basidiomycetes 300
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4665285
求助须知:如何正确求助?哪些是违规求助? 4046457
关于积分的说明 12515896
捐赠科研通 3738986
什么是DOI,文献DOI怎么找? 2064970
邀请新用户注册赠送积分活动 1094476
科研通“疑难数据库(出版商)”最低求助积分说明 974883