板条
马氏体
材料科学
微观结构
晶体孪晶
锭
无扩散变换
结晶学
冶金
聚结(物理)
连续冷却转变
位错
热力学
复合材料
贝氏体
化学
合金
物理
天体生物学
作者
P. Thomé,Mike Schneider,Victoria A. Yardley,E. J. Payton,Gunther Eggeler
出处
期刊:Materials
[MDPI AG]
日期:2023-02-13
卷期号:16 (4): 1549-1549
被引量:9
摘要
In the binary Fe-rich Fe-Ni system, martensite start temperatures MS decrease from 500 to 200 K when Ni concentrations increase from 20 to 30 at.%. It is well known that alloys with Ni concentrations below 28.5 at.% exhibit lath martensite (LM) microstructures (athermal transformation, small crystals, accommodation by dislocations). Above this concentration, plate martensite (PM) forms (burst-like transformation, large crystals, accommodation by twins). The present work is based on a combination of (i) ingot metallurgy for the manufacturing of Fe-Ni alloys with varying Ni-concentrations, (ii) thermal analysis to measure phase transformation temperatures with a special focus on MS, and (iii) analytical orientation imaging scanning electron microscopy for a quantitative description of microstructures and crystallographic features. For Ni-concentrations close to 28.5 at.%, the descending MS-curve shows a local maximum, which has been overlooked in prior works. Beyond the local maximum, MS temperatures decrease again and follow the overall trend. The local maximum is associated with the formation of transition martensite (TM) microstructure, which exhibits LM and PM features. TM forms at higher MS temperatures, as it is accommodated by simultaneous twinning and dislocation slip. An adopted version of the Clausius-Clapeyron equation explains the correlation between simultaneous accommodation and increased transformation temperatures.
科研通智能强力驱动
Strongly Powered by AbleSci AI