mRSubLoc: A novel multi-label learning framework integrating RNA large language model for mRNA subcellular localization

计算机科学 信使核糖核酸 核糖核酸 亚细胞定位 人工智能 计算生物学 自然语言处理 化学 生物 基因 生物化学
作者
Xiao Wang,Lixiang Yang,Rong Wang,Yongfeng Zhang
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-9
标识
DOI:10.1109/jbhi.2025.3591454
摘要

The subcellular localization of messenger RNA (mRNA) is essential for the regulation of gene expression and plays a pivotal role in targeted drug development. Although several computational models have been developed to predict mRNA localization, these approaches still face challenges in sequence representation and exhibit limited performance in handling multi-localization tasks. In this paper, we propose mRSubLoc, a novel multi-label deep learning framework for predicting mRNA subcellular localization. The model integrates the RNA large language model RNAErnie with one-hot encoding and Word2Vec embeddings to construct a comprehensive representation of mRNA sequences. A text convolutional neural network (TextCNN) is employed to capture local feature patterns, while a bidirectional long short-term memory network (BiLSTM) is used to capture long-range dependencies. These features are fused using a multi-head self-attention mechanism to effectively capture localization-specific characteristics. Finally, a multi-layer perceptron (MLP) explores complex dependencies among multiple localization sites, facilitating accurate mRNA subcellular localization prediction. Experimental results on a testing set demonstrate that mRSubLoc significantly outperforms state-of-the-art methods across multiple metrics, including Aiming (0.7858), Coverage (0.6212), Accuracy (0.6161), Absolute-True (0.3070), and Absolute-False (0.1319). This study proposes a novel approach for predicting mRNA subcellular localization and provides new perspectives for advancing disease diagnosis and drug discovery in biomedical research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
桐桐应助科研通管家采纳,获得10
刚刚
子车茗应助科研通管家采纳,获得20
刚刚
jj完成签到,获得积分10
1秒前
JamesPei应助科研通管家采纳,获得10
1秒前
Akim应助提高vc采纳,获得10
1秒前
jing发布了新的文献求助10
1秒前
星辰大海应助科研通管家采纳,获得10
1秒前
changping应助寒塘采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
英俊的铭应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
小青椒应助科研通管家采纳,获得30
2秒前
FashionBoy应助科研通管家采纳,获得10
3秒前
桐桐应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
浮游应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
gxch完成签到,获得积分10
4秒前
今后应助scl采纳,获得10
4秒前
UAU发布了新的文献求助30
4秒前
5秒前
唐诗完成签到,获得积分20
5秒前
科研通AI5应助子淇采纳,获得10
5秒前
5秒前
小二郎应助阿琬采纳,获得10
6秒前
6秒前
Mostima发布了新的文献求助10
6秒前
6秒前
小菜花完成签到 ,获得积分10
7秒前
7秒前
共享精神应助Yan采纳,获得10
7秒前
8秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Binary Alloy Phase Diagrams, 2nd Edition 1000
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5001832
求助须知:如何正确求助?哪些是违规求助? 4246915
关于积分的说明 13231512
捐赠科研通 4045758
什么是DOI,文献DOI怎么找? 2213210
邀请新用户注册赠送积分活动 1223392
关于科研通互助平台的介绍 1143701