亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

GAN-based image prediction of maize growth across varieties and developmental stages

可解释性 计算机科学 人工智能 模式识别(心理学) 像素 相似性(几何) 机器学习 图像(数学)
作者
Xinyi Wang,Shilong Liu,Zhihao Wang,Zedong Geng,Weikun Li,Chengxiu Wu,Yingjie Xiao,Wanneng Yang,Lingfeng Duan
出处
期刊:Plant Methods [BioMed Central]
卷期号:21 (1)
标识
DOI:10.1186/s13007-025-01430-4
摘要

Plant growth prediction assists physiologists and botanists in analyzing future development trends, thereby shortening experimental cycles and reducing costs. Traditional growth prediction methods mainly focused on phenotypic traits instead of images, which leads to limited visual interpretability. This article proposed a visualized growth prediction method based on an improved Pix2PixHD network, incorporating spatial attention mechanisms, an improved loss function, and a modified dropout strategy to enhance prediction accuracy and visual fidelity. The proposed method can employ maize images from early time points to predict the images of later stages. The prediction results are presented in the form of side-view growth images with a resolution of 1024 × 1024 pixels, enabling the capture of detailed, organ-level growth information. This study conducted experiments on 696 varieties, a highly genetically diverse maize population derived from the crossbreeding of 24 foundational Chinese inbred lines. The results showed that Fréchet Inception Distance, Peak Signal-to-Noise Ratio and structural similarity between the predicted images and the actual images reached 20.27, 23.23 and 0.899, respectively. The model achieved a mean Pearson correlation coefficient of 0.939 between predicted and actual phenotypic traits, while maintaining robust performance across different time intervals. It was also demonstrated that the model outperformed the existing related studies. The code is available online. The results showed that the method can make realistic predictions of multi-variety maize growth based on high-resolution generation. Furthermore, it can achieve prediction of maize growth throughout the entire growth cycle with high accuracy. In conclusion, this article provided a novel solution for visualized growth prediction of large plants with complex physiological structures throughout the entire growth cycle. A primary limitation of this study is its focus on modeling and predicting crop growth under uniform environmental conditions, without considering environmental variability. Future work will aim to incorporate diverse environmental factors into the model to enhance its robustness and predictive accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
7秒前
小梦发布了新的文献求助10
11秒前
14秒前
夏侯德东发布了新的文献求助10
20秒前
夏侯德东发布了新的文献求助10
35秒前
58秒前
Zzz_Carlos完成签到 ,获得积分10
1分钟前
量子星尘发布了新的文献求助30
1分钟前
小蘑菇应助双手外科结采纳,获得10
1分钟前
彩虹儿应助科研通管家采纳,获得10
1分钟前
多边棱发布了新的文献求助10
1分钟前
2分钟前
2分钟前
2分钟前
春和小椰完成签到,获得积分20
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
搜集达人应助多边棱采纳,获得10
3分钟前
3分钟前
悦耳白山发布了新的文献求助10
3分钟前
科研通AI5应助科研通管家采纳,获得10
3分钟前
彩虹儿应助科研通管家采纳,获得10
3分钟前
h0jian09完成签到,获得积分10
3分钟前
4分钟前
隐形曼青应助深情的荧采纳,获得10
4分钟前
4分钟前
多边棱发布了新的文献求助10
4分钟前
柿饼完成签到,获得积分10
4分钟前
Hello应助多边棱采纳,获得10
4分钟前
5分钟前
烟花应助科研通管家采纳,获得10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
6分钟前
多边棱发布了新的文献求助10
6分钟前
6分钟前
斯文败类应助维C橙子采纳,获得10
6分钟前
6分钟前
酷波er应助多边棱采纳,获得10
7分钟前
谨慎的白秋完成签到,获得积分20
7分钟前
高分求助中
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
Modern Britain, 1750 to the Present (第2版) 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4640244
求助须知:如何正确求助?哪些是违规求助? 4033115
关于积分的说明 12476547
捐赠科研通 3720679
什么是DOI,文献DOI怎么找? 2053504
邀请新用户注册赠送积分活动 1084660
科研通“疑难数据库(出版商)”最低求助积分说明 966475