I-DCGAN and TOPSIS-IFP: A simulation generation model for radiographic flaw detection images in light alloy castings and an algorithm for quality evaluation of generated images

托普西斯 计算机科学 图像质量 可靠性(半导体) 插值(计算机图形学) 人工智能 算法 图像(数学) 数学 物理 运筹学 量子力学 功率(物理)
作者
Ming-jun Hou,Hao Dong,Xiaoyuan Ji,Wenbing Zou,Xiang-sheng Xia,Meng Li,Yajun Yin,Baohui Li,Qiang Chen,Jianxin Zhou
出处
期刊:China Foundry [Springer Nature]
卷期号:21 (3): 239-247 被引量:2
标识
DOI:10.1007/s41230-024-3094-x
摘要

The intelligent detection technology driven by X-ray images and deep learning represents the forefront of advanced techniques and development trends in flaw detection and automated evaluation of light alloy castings. However, the efficacy of deep learning models hinges upon a substantial abundance of flaw samples. The existing research on X-ray image augmentation for flaw detection suffers from shortcomings such as poor diversity of flaw samples and low reliability of quality evaluation. To this end, a novel approach was put forward, which involves the creation of the Interpolation-Deep Convolutional Generative Adversarial Network (I-DCGAN) for flaw detection image generation and a comprehensive evaluation algorithm named TOPSIS-IFP. I-DCGAN enables the generation of high-resolution, diverse simulated images with multiple appearances, achieving an improvement in sample diversity and quality while maintaining a relatively lower computational complexity. TOPSIS-IFP facilitates multi-dimensional quality evaluation, including aspects such as diversity, authenticity, image distribution difference, and image distortion degree. The results indicate that the X-ray radiographic images of magnesium and aluminum alloy castings achieve optimal performance when trained up to the 800th and 600th epochs, respectively. The TOPSIS-IFP value reaches 78.7% and 73.8% similarity to the ideal solution, respectively. Compared to single index evaluation, the TOPSIS-IFP algorithm achieves higher-quality simulated images at the optimal training epoch. This approach successfully mitigates the issue of unreliable quality associated with single index evaluation. The image generation and comprehensive quality evaluation method developed in this paper provides a novel approach for image augmentation in flaw recognition, holding significant importance for enhancing the robustness of subsequent flaw recognition networks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
酆不二发布了新的文献求助10
1秒前
硕士小白发布了新的文献求助10
1秒前
FashionBoy应助蒋依伶采纳,获得10
1秒前
AEB完成签到,获得积分10
2秒前
2秒前
失眠傲白完成签到,获得积分10
2秒前
Zhusy完成签到 ,获得积分10
2秒前
喜宝完成签到 ,获得积分10
2秒前
zake发布了新的文献求助20
2秒前
危机的毛衣完成签到,获得积分10
2秒前
奋斗的剑完成签到 ,获得积分10
3秒前
活力忆秋完成签到,获得积分10
3秒前
NexusExplorer应助zyl采纳,获得10
3秒前
活力亦瑶完成签到,获得积分10
3秒前
3秒前
fang发布了新的文献求助10
4秒前
姬师发布了新的文献求助10
4秒前
微风打了烊完成签到 ,获得积分10
4秒前
然然然完成签到 ,获得积分10
4秒前
所所应助Jiali采纳,获得10
4秒前
4秒前
无聊的翠芙完成签到,获得积分10
4秒前
7258完成签到,获得积分10
5秒前
小王时完成签到,获得积分10
5秒前
新年好完成签到,获得积分10
6秒前
莴苣完成签到,获得积分10
6秒前
6秒前
duang发布了新的文献求助30
6秒前
迪迦奥特曼完成签到,获得积分10
8秒前
望昔完成签到,获得积分20
8秒前
顾矜应助酆不二采纳,获得10
8秒前
你可真下饭应助专注青荷采纳,获得10
8秒前
无限若云完成签到,获得积分10
9秒前
石头驳回了Zoo应助
9秒前
小马甲应助淡定的定帮采纳,获得10
9秒前
子车茗应助科研通管家采纳,获得30
10秒前
科研通AI5应助科研通管家采纳,获得10
10秒前
caidan应助科研通管家采纳,获得10
10秒前
隐形曼青应助科研通管家采纳,获得10
10秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Local Grammar Approaches to Speech Act Studies 5000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4223717
求助须知:如何正确求助?哪些是违规求助? 3756984
关于积分的说明 11809369
捐赠科研通 3419103
什么是DOI,文献DOI怎么找? 1876499
邀请新用户注册赠送积分活动 930183
科研通“疑难数据库(出版商)”最低求助积分说明 838385