A Born Fourier Neural Operator for Solving Poisson’s Equation With Limited Data and Arbitrary Domain Deformation

计算机科学 操作员(生物学) 一般化 解算器 偏微分方程 应用数学 傅里叶变换 人工神经网络 算法 人工智能 数学优化 数学 数学分析 生物化学 转录因子 基因 抑制因子 化学
作者
Zheng Zong,Yusong Wang,Siyuan He,Zhun Wei
出处
期刊:IEEE Transactions on Antennas and Propagation [IEEE Antennas & Propagation Society]
卷期号:72 (2): 1827-1836 被引量:2
标识
DOI:10.1109/tap.2023.3338770
摘要

Partial differential equations (PDEs) are usually used to model complex electromagnetic systems, but solving them can be computationally expensive. Data-driven techniques have emerged as a promising solution due to their speed advantages in online tests, but they still face challenges related to training data quality and quantity, as well as generalization issues. To address these challenges, we present a Born Fourier neural operator (B-FNO) to solve generalized Poisson's equation. First, we utilize the Born approximation method to rapidly compute a rough solver. Second, we construct a Fourier neural operator (FNO) that approximates the mapping between the input Born approximation solver and the true solution, achieved by leveraging a residual learning structure. Importantly, we introduce conformal mapping tools to learning-based methods, allowing the trained B-FNO to be transferred across solving PDEs defined in different regions without requiring re-training. Extensive numerical examples based on benchmark datasets demonstrate that B-FNO learning scheme is effective in reducing the size of the training dataset and enhancing the generalizability to unseen scenarios compared to traditional methods. It is expected that the proposed B-FNO learning scheme will find its applications in data-driven electromagnetic solvers with the requirements of less training data and high generalization abilities.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
烂漫剑发布了新的文献求助10
1秒前
2秒前
为治发布了新的文献求助30
3秒前
3秒前
脑洞疼应助大气海露采纳,获得10
4秒前
5秒前
脑洞疼应助zzzzzp采纳,获得10
5秒前
6秒前
7秒前
万能图书馆应助巫马千秋采纳,获得10
7秒前
7秒前
等等NANO发布了新的文献求助10
7秒前
tzhzh8发布了新的文献求助10
8秒前
英俊的铭应助笨笨剑采纳,获得10
8秒前
Orange应助JT采纳,获得10
9秒前
kings完成签到,获得积分10
9秒前
11秒前
英姑应助奶茶吨吨吨采纳,获得10
12秒前
小肥羊应助伶俐夏兰采纳,获得10
12秒前
ke完成签到,获得积分10
12秒前
13秒前
科研小白完成签到,获得积分10
13秒前
巴乔完成签到,获得积分10
13秒前
囚徒完成签到 ,获得积分10
14秒前
ssss发布了新的文献求助10
16秒前
16秒前
酷波er应助枫影采纳,获得10
17秒前
Neyra完成签到,获得积分10
18秒前
吴端发布了新的文献求助30
19秒前
yar应助小厮采纳,获得10
19秒前
20秒前
GT完成签到,获得积分0
20秒前
21秒前
22秒前
科研通AI2S应助旷野采纳,获得10
22秒前
Lucas应助ssss采纳,获得10
22秒前
洋洋完成签到,获得积分10
22秒前
Chaiyuan完成签到 ,获得积分10
24秒前
高分求助中
Africanfuturism: African Imaginings of Other Times, Spaces, and Worlds 3000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Exhibiting Chinese Art in Asia: Histories, Politics and Practices 700
1:500万中国海陆及邻区磁力异常图 600
相变热-动力学 520
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3897331
求助须知:如何正确求助?哪些是违规求助? 3441279
关于积分的说明 10820879
捐赠科研通 3166247
什么是DOI,文献DOI怎么找? 1749218
邀请新用户注册赠送积分活动 845209
科研通“疑难数据库(出版商)”最低求助积分说明 788504