Improving Gastric Lesion Detection by using Specular Highlights Removal Algorithm and Deep Learning Approach

预处理器 人工智能 深度学习 计算机科学 镜面反射 镜面反射高光 病变 目标检测 计算机视觉 内窥镜检查 模式识别(心理学) 放射科 医学 病理 物理 量子力学
作者
Trinh Thi Thuy An,Nguyen Tai Hieu,Ly Vu
标识
DOI:10.1109/iccais59597.2023.10382387
摘要

Gastric lesions cause many types of cancer with high mortality rates. Therefore, detecting gastric lesions early is necessary to prevent the risk of cancer. A conventional method used to detect these lesions is an endoscopy procedure. However, observation on the endoscopy images can be a challenge for endoscopists due to their irregular shapes and sizes, which can make them appear similar to the surrounding tissue, thus, increasing the likelihood of missing them during the procedure. Using deep learning models for automated lesion detection can help to reduce the rate of missed lesions by endoscopists. Recently, the most effective deep learning model for lesion detection is the You Only Look Once version 8 (YOLOv8) model. However, one of the challenging issues of deep learning models is to handle the specular highlight areas on the endoscopy images that make noise to the object detection model. To handle this, we propose the preprocessing image method named Specular Highlights Removal (SHR) algorithm to eliminate the specular highlights areas to improve the quality of endoscopy images. As a result, our proposed solution enhances the accuracy of the deep learning model for the lesion detection problem. This is proved by the extensive experiments on two collected datasets, i.e., Negative Helicobacter-Pylori(HP) and Positive HP datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ll应助那儿采纳,获得10
刚刚
Megha发布了新的文献求助10
1秒前
Pan完成签到,获得积分10
1秒前
2秒前
渔婆发布了新的文献求助10
2秒前
3秒前
3秒前
完美世界应助鹏酱233采纳,获得10
3秒前
无奈完成签到,获得积分10
4秒前
6秒前
6秒前
Jerry完成签到,获得积分10
6秒前
小送完成签到,获得积分10
7秒前
qingshan完成签到,获得积分10
7秒前
1256完成签到,获得积分10
7秒前
orixero应助蔡继海采纳,获得10
7秒前
7秒前
烟花应助飞兰采纳,获得10
7秒前
大气的莆发布了新的文献求助10
7秒前
9秒前
CodeCraft应助幸福广山采纳,获得10
9秒前
10秒前
丘比特应助无辜乘云采纳,获得10
10秒前
10秒前
潘半青完成签到,获得积分10
11秒前
11秒前
11秒前
12秒前
玩命的化蛹完成签到,获得积分20
12秒前
13秒前
11完成签到,获得积分20
13秒前
13秒前
14秒前
14秒前
14秒前
14秒前
14秒前
15秒前
nn11发布了新的文献求助10
15秒前
FTAo完成签到,获得积分20
15秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3790087
求助须知:如何正确求助?哪些是违规求助? 3334781
关于积分的说明 10272224
捐赠科研通 3051278
什么是DOI,文献DOI怎么找? 1674537
邀请新用户注册赠送积分活动 802651
科研通“疑难数据库(出版商)”最低求助积分说明 760828