清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Future advances of artificial biosensor technology in biomedical applications

生物传感器 计算机科学 纳米技术 生化工程 工程类 材料科学
作者
Smriti Gaba,Nidhi Chauhan,Ramesh Chandra,Utkarsh Jain
出处
期刊:Talanta open [Elsevier BV]
卷期号:9: 100301-100301 被引量:13
标识
DOI:10.1016/j.talo.2024.100301
摘要

Recent advancements in synthetic biology have facilitated the concept of a cell-based and cell-free biosensing platform, which enables the identification of molecular signals encompassing metal/chemical to disease biomarkers. The artificial sensing incorporates the concept of both whole-cell and cell-free biosensing strategies, which include highly regulated natural and synthetic components to exhibit genetically encoded molecular sensing properties. These sensors utilize protein expression to release signalling molecules as the result of received input to facilitate the detection of analytes. Intending to use modified living cells or artificial cells in biosensing, the proposed study highlights the importance of cell-based and cell-free sensors in biomedical and diagnostics. The article's first section will explain the biosensing types including cell-free, cell-based, vesicle-based, and paper-based sensing where sensing relies on cell, cellular components, and cell-free systems which mostly involve transcriptional or translational machinery. It highlights the advantages, disadvantages, and challenges of advancing approaches. The second section of the article elaborates on the principle of sensing and the strategies involved. Though very few studies have been reported on this topic, therefore, the current article focuses on the artificial sensors that have been designed for medical and diagnostic purposes. The review also marks the current and future advancements in the field including artificial intelligence, nanotechnology, stem cells, and omics. Sensing recently has a big impact on disease diagnosis as well as drug development and targeted therapies. While newly developed biology-based diagnostics technologies still have high costs, require highly trained personnel, suffer stability issues and reduce sensor performance. Therefore, this review brings readers' attention to advances and challenges in the following field and promotes the resolution of medical and diagnostics issues in the future.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助小婷君采纳,获得10
1秒前
Spice完成签到 ,获得积分10
14秒前
25秒前
28秒前
小婷君发布了新的文献求助10
33秒前
隐形曼青应助小婷君采纳,获得10
55秒前
大模型应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
武傲翔发布了新的文献求助10
1分钟前
1分钟前
小婷君发布了新的文献求助10
1分钟前
英俊的铭应助junjun采纳,获得10
1分钟前
小强完成签到 ,获得积分10
1分钟前
1分钟前
ZF发布了新的文献求助10
2分钟前
2分钟前
2分钟前
ZF完成签到,获得积分10
2分钟前
junjun发布了新的文献求助10
2分钟前
junjun完成签到,获得积分10
2分钟前
充电宝应助xiaoyi采纳,获得10
2分钟前
lanxinge完成签到 ,获得积分10
3分钟前
小蘑菇应助杜医生采纳,获得10
3分钟前
3分钟前
魔幻的妖丽完成签到 ,获得积分10
4分钟前
4分钟前
xiaofeixia完成签到 ,获得积分10
5分钟前
5分钟前
鲁成危完成签到,获得积分10
5分钟前
失眠的香蕉完成签到 ,获得积分10
6分钟前
轩辕完成签到,获得积分10
6分钟前
领悟完成签到,获得积分10
6分钟前
wangfaqing942完成签到 ,获得积分10
7分钟前
潇洒的马里奥完成签到,获得积分10
7分钟前
李健应助tcad采纳,获得10
7分钟前
7分钟前
tcad发布了新的文献求助10
8分钟前
积极的台灯应助mmyhn采纳,获得10
8分钟前
8分钟前
杜医生发布了新的文献求助10
8分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
振动分析基础 -- (美)L_米罗维奇著;上海交通大学理论力学教研室译 1000
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 1000
壮语核心名词的语言地图及解释 900
盐环境来源微生物多相分类及嗜盐古菌基因 组适应性与演化研究 500
Canon of Insolation and the Ice-age Problem 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 计算机科学 纳米技术 复合材料 化学工程 遗传学 基因 物理化学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 3913910
求助须知:如何正确求助?哪些是违规求助? 3459009
关于积分的说明 10903775
捐赠科研通 3185664
什么是DOI,文献DOI怎么找? 1761074
邀请新用户注册赠送积分活动 851825
科研通“疑难数据库(出版商)”最低求助积分说明 792980