Optimization of robotic polishing process parameters for mold steel based on artificial intelligence method

抛光 模具 过程(计算) 人工智能 计算机科学 工程类 机械工程 工程制图 制造工程 材料科学 复合材料 操作系统
作者
Ri Pan,Xiaofang Cheng,Yinhui Xie,Jun Li,Weilong Huang
出处
期刊:Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture [SAGE Publishing]
卷期号:238 (14): 2180-2191 被引量:1
标识
DOI:10.1177/09544054231221959
摘要

Aimed to achieve quantitative control of workpiece surface after robotic polishing and improve polishing efficiency, a two-step processing optimization method involves artificial intelligence algorithms is investigated. Firstly, based on XGBoost algorithm, a prediction model for polished workpiece surface depending on key parameters is proposed, and the accuracy of the model is verified by experiments. After that, by using the above model, the influence of each parameter on the roughness was evaluated quantitatively. Subsequently, target roughness-driven optimization of processing parameters was presented by combining the roughness prediction model with NSGA II-TOPSIS algorithm based on the influence of each parameter on the roughness. To verify the proposed processing optimization method, polishing experiments of mold steel samples were conducted. The experimental results show that the maximum absolute error between the predicted and experimental roughness is 0.035 μm, and the maximum relative error is <9%. At the same time, when the minimum is set as the optimization objective. With the same length of polishing path, the feed rate is increased from 0.25 mm/s to 0.37 mm/s, and the efficiency is improved to 48%. The NSGA II-TOPSIS algorithm can achieve quantitative control of mold steel surface roughness after robotic polishing to improve polishing efficiency, and provide a basis for reasonable selection of processing parameters, which have certain practical value.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助Shilly采纳,获得10
1秒前
fjh发布了新的文献求助10
2秒前
2秒前
南栀发布了新的文献求助30
2秒前
2秒前
只道寻常完成签到,获得积分10
3秒前
3秒前
文艺点点完成签到,获得积分10
3秒前
3秒前
传奇3应助无私语儿采纳,获得10
4秒前
zx完成签到 ,获得积分10
4秒前
小乐完成签到 ,获得积分10
5秒前
关包子完成签到,获得积分10
5秒前
微兔小妹完成签到 ,获得积分10
5秒前
赘婿应助Gao采纳,获得10
6秒前
研友_ZAeR6Z发布了新的文献求助10
6秒前
正直三颜完成签到,获得积分10
6秒前
孙皓然完成签到 ,获得积分10
7秒前
Aniee完成签到,获得积分10
7秒前
wuhoo完成签到,获得积分10
7秒前
刘清河完成签到 ,获得积分10
8秒前
zqingqing完成签到,获得积分10
8秒前
9秒前
自然的城发布了新的文献求助10
9秒前
斯文败类应助shl采纳,获得10
9秒前
关包子发布了新的文献求助10
9秒前
10秒前
10秒前
妮儿发布了新的文献求助10
10秒前
vvvvvv完成签到,获得积分10
10秒前
平常破茧完成签到 ,获得积分10
11秒前
11秒前
11秒前
hopen发布了新的文献求助10
12秒前
母单花完成签到 ,获得积分10
12秒前
12秒前
托姆羊0710完成签到,获得积分10
12秒前
苗条映菱完成签到,获得积分10
12秒前
vvvvvv发布了新的文献求助10
13秒前
可爱的函函应助王木木采纳,获得10
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785157
求助须知:如何正确求助?哪些是违规求助? 3330567
关于积分的说明 10247380
捐赠科研通 3046041
什么是DOI,文献DOI怎么找? 1671820
邀请新用户注册赠送积分活动 800855
科研通“疑难数据库(出版商)”最低求助积分说明 759730