CORONet: A Cross-Sequence Joint Representation and Hypergraph Convolutional Network for Classifying Molecular Subtypes of Breast Cancer Using Incomplete DCE-MRI

模式识别(心理学) 计算机科学 乳腺癌 亚型 特征(语言学) 人工智能 特征提取 相关性 代表(政治) 计算生物学 癌症 生物 数学 遗传学 政治 法学 程序设计语言 哲学 几何学 语言学 政治学
作者
Xiaoyang Xie,Lin Wu,Zhiming Su,Zhipeng Sun,Xin Cao,Yuqing Hou,Xiaowei He,Fengjun Zhao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-12
标识
DOI:10.1109/jbhi.2024.3355111
摘要

Breast cancer, the predominant malignancy among women, is characterized by significant heterogeneity, leading to the emergence of distinct molecular subtypes. Accurate differentiation of these molecular subtypes holds paramount clinical significance, owing to substantial variations in prognosis, therapeutic strategies, and survival outcomes. In this study, we propose a cross-sequence joint representation and hypergraph convolution network (CORONet) for classifying molecular subtypes of breast cancer using incomplete DCE-MRI. Specifically, we first build a cross-sequence joint representation (COR) module to integrate image imputation and feature representation into a unified framework, encouraging effective feature extraction for subsequent classification. Then, we fuse multiple COR features and applied feature selection to reduce the redundant information between sequences. Finally, we deploy hypergraph structures to model high-order correlation among different subjects and extracted high-level semantic features by hypergraph convolutions for molecular subtyping. Extensive experiments on incomplete DCE-MRIs of 395 patients from the TCIA repository showed a significant improvement of our CORONet over state of the arts, with the area under the curve (AUC) of 0.891 and 0.903 for luminal and triple-negative (TN) subtype prediction, respectively. Similar advantages of CORONet were also confirmed in partial complete DCE-MRIs of 144 patients, achieving an AUC of 0.858 and 0.832 for predicting luminal and TN subtypes of breast cancer, respectively. Nevertheless, both of these values were lower compared to the scenario where DCE-MRIs from all 395 patients were utilized. Our study contributes to the precise molecular subtyping using incomplete multi-sequence DCE-MRI, thereby offering promising prospects for future risk stratification of breast cancer patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lzd完成签到,获得积分10
1秒前
重要若烟完成签到 ,获得积分10
2秒前
huihui完成签到,获得积分10
2秒前
gmaster完成签到,获得积分10
6秒前
8秒前
song完成签到 ,获得积分10
9秒前
9秒前
菜根谭完成签到,获得积分10
10秒前
不会失忆完成签到,获得积分10
12秒前
自知难明发布了新的文献求助10
13秒前
星辰大海应助han采纳,获得10
14秒前
Keycy完成签到,获得积分10
15秒前
CodeCraft应助HalaMadrid采纳,获得10
17秒前
Fan完成签到 ,获得积分10
17秒前
芯止谭轩完成签到,获得积分10
19秒前
自知难明完成签到,获得积分10
19秒前
小高完成签到,获得积分10
20秒前
不会学术的羊完成签到,获得积分10
23秒前
24秒前
淡定从霜完成签到 ,获得积分10
27秒前
儒雅雅柏完成签到,获得积分10
27秒前
乌啦啦发布了新的文献求助10
28秒前
ash完成签到,获得积分10
31秒前
上官若男应助坏坏的快乐采纳,获得30
32秒前
科研路上的干饭桶完成签到,获得积分10
35秒前
磁带机完成签到,获得积分10
41秒前
沉静的语堂完成签到,获得积分10
42秒前
吕嫣娆完成签到 ,获得积分10
42秒前
丘比特应助FOLY采纳,获得10
44秒前
45秒前
机智的紫丝完成签到,获得积分10
46秒前
46秒前
47秒前
帅气西牛完成签到,获得积分10
49秒前
小陈完成签到 ,获得积分10
49秒前
sunnian发布了新的文献求助10
51秒前
52秒前
52秒前
xxq123发布了新的文献求助10
53秒前
54秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846014
求助须知:如何正确求助?哪些是违规求助? 3388334
关于积分的说明 10552889
捐赠科研通 3108936
什么是DOI,文献DOI怎么找? 1713223
邀请新用户注册赠送积分活动 824620
科研通“疑难数据库(出版商)”最低求助积分说明 774974