MHCFormer: Multiscale Hierarchical Conv-Aided Fourierformer for Hyperspectral Image Classification

安全性令牌 计算机科学 高光谱成像 人工智能 模式识别(心理学) 卷积神经网络 变压器 上下文图像分类 特征提取 深度学习 图像(数学) 工程类 计算机安全 电压 电气工程
作者
Hao Shi,Youqiang Zhang,Guo Cao,Di Yang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:73: 1-15 被引量:6
标识
DOI:10.1109/tim.2023.3344142
摘要

Convolutional neural networks (CNNs) have dominated the hyperspectral image (HSI) classification due to their tremendous feature learning capability. However, the formidable local sensitivity is both a strength and a weakness. Recently, the vision transformers have exhibited impressive performances on various vision problems. Compared with CNNs, they can model long-range dependencies to learn more abundant interactions between spatial locations. Nevertheless, the existing transformer-based HSI classification methods also concentrate too much on the advantages of the transformer architecture and disregard the importance of local dependencies. In addition, token generation and token mixers in transformer-like architectures have not been adequately explored, leading to difficulties in obtaining the best classification performance. To deal with these problems, a novel multiscale hierarchical conv-aided Fourierformer (MHCFormer) is proposed for HSI classification. To the best of our knowledge, this is the first time that CNN, transformer, and Fourier transform are skillfully combined for HSI classification. The proposed MHCFormer involves three stages, i.e., multiscale spectral–spatial token generation, hierarchical token learning, and a classification head. The multiscale spectral–spatial token generation is constructed to transform HSI into tokens with multiscale-enhanced spectral–spatial information. The hierarchical token learning is designed to explore multiscale tokens globally and locally by integrating the design philosophy of transformers and CNNs along with Fourier transforms into a block and stacking the blocks hierarchically. Extensive experimental results on the new WHU-Hi-HanChuan dataset and the widely used Indian Pines and Houston 2013 datasets have demonstrated the superiority of MHCFormer over other state-of-the-art methods. The code of our work will be available publicly at https://github.com/Tikiten/MHCFormer .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
soar完成签到,获得积分10
1秒前
2秒前
kkk完成签到,获得积分10
3秒前
小二郎应助高大的秋白采纳,获得10
3秒前
科研迪完成签到,获得积分10
6秒前
7秒前
泥過完成签到 ,获得积分10
7秒前
8秒前
Aixia发布了新的文献求助10
10秒前
英俊的铭应助忧心的寄松采纳,获得10
12秒前
世间安得双全法完成签到,获得积分0
15秒前
16秒前
16秒前
20秒前
小元发布了新的文献求助10
20秒前
Punch完成签到,获得积分10
20秒前
Unicorn发布了新的文献求助10
20秒前
25秒前
26秒前
26秒前
小奋青完成签到 ,获得积分10
27秒前
27秒前
852应助joleisalau采纳,获得10
28秒前
LGJ完成签到,获得积分10
30秒前
深情安青应助lizhiqian2024采纳,获得10
30秒前
FashionBoy应助科研通管家采纳,获得10
32秒前
32秒前
桐桐应助科研通管家采纳,获得10
32秒前
joker_k应助科研通管家采纳,获得20
32秒前
科研通AI5应助科研通管家采纳,获得10
33秒前
33秒前
情怀应助科研通管家采纳,获得10
33秒前
33秒前
高山流水应助科研通管家采纳,获得10
33秒前
脑洞疼应助科研通管家采纳,获得10
33秒前
JamesPei应助科研通管家采纳,获得10
33秒前
33秒前
33秒前
Ava应助科研通管家采纳,获得10
33秒前
33秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Mixing the elements of mass customisation 300
the MD Anderson Surgical Oncology Manual, Seventh Edition 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777986
求助须知:如何正确求助?哪些是违规求助? 3323635
关于积分的说明 10215128
捐赠科研通 3038833
什么是DOI,文献DOI怎么找? 1667645
邀请新用户注册赠送积分活动 798341
科研通“疑难数据库(出版商)”最低求助积分说明 758339