材料科学
热液循环
超级电容器
电极
电容
电化学
电容感应
离子
化学工程
纳米技术
光电子学
化学
计算机科学
有机化学
物理化学
工程类
操作系统
作者
Min Lai,Ke Chen,Dianhui Wang,Ping Cai,Lixian Sun,Kai Zhang,Bin Li,Changlai Yuan,Yongjin Zou,Zhiqiang Wang,Hailin Peng
标识
DOI:10.1016/j.mtnano.2023.100450
摘要
The strong re-stacking of Ti3C2Tx MXene nanosheets severely blocks ion transport pathway and sacrifices electrochemical performance. Here, a protective hydrothermal treatment is used to improve ion pathway in Ti3C2Tx MXene. The protective hydrothermal treatment is simply conducted in the hydrothermal kettle (filled with N2 atmosphere) placed in vacuum oven. The optimal Ti3C2Tx is achieved by the hydrothermal treatment of 150 °C for 12h, and recorded as h-Ti3C2Tx@150 °C/12h. The h-Ti3C2Tx@150 °C/12h film electrode achieves significantly improved ion transport pathways and enhanced ion accessibility with more pseudocapacitive active sites due to the increased interlayer spacing and pores as well as decreased flake size. According to DFT calculations, a small number of oxides (TiO2 nanoparticles) produced during the hydrothermal treatment also facilitate to increase the capacitive performance of h-Ti3C2Tx@150 °C/12h. Therefore, the h-Ti3C2Tx@150 °C/12h film electrode achieves significantly increased capacitance and rate performance. The h-Ti3C2Tx@150 °C/12h film electrode exhibits excellent capacitance (498.3 F g−1 and 1911 F cm−3 at 1 A g−1) and rate performance (63 % retention from 1 to 20 A g−1) with high cycling stability (98.2 % retention after 20 000 cycles), which are among the best electrochemical performances of undoped Ti3C2Tx based film electrodes reported so far. Thick h-Ti3C2Tx@150 °C/12h film electrode of 33.1 μm thickness exhibits an ultra-high areal capacitance of 3.23 F cm−2 at 1 A g−1. Moreover, the h-Ti3C2Tx@150 °C/12h-based flexible symmetric supercapacitor device exhibits excellent energy storage performance (117 F g−1 at 0.5 A g−1 and 23.4 Wh kg−1 at 299.8 W kg−1) with high cycling stability (84 % retention after 3000 cycles) and bending stability, outperforming most of previously reported Ti3C2Tx-based flexible supercapacitors. The impressive results indicate the great application potential of the h-Ti3C2Tx@150 °C/12h film in flexible energy storage devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI