Artificial intelligence and assisted reproductive technology: A comprehensive systematic review

辅助生殖技术 生殖技术 系统回顾 工程伦理学 工程类 梅德林 政治学 生物 不育 怀孕 遗传学 法学 哺乳期
作者
Yen-Chen Wu,Emily Chia‐Yu Su,Jung-Hsiu Hou,Charles Noah Lin,Kat Lin,Chi-Huang Chen
出处
期刊:Taiwanese Journal of Obstetrics & Gynecology [Elsevier BV]
卷期号:64 (1): 11-26
标识
DOI:10.1016/j.tjog.2024.10.001
摘要

The objective of this review is to evaluate the contributions of Artificial Intelligence (AI) to Assisted Reproductive Technologies (ART), focusing on its role in enhancing the processes and outcomes of fertility treatments. This study analyzed 48 relevant articles to assess the impact of AI on various aspects of ART, including treatment efficacy, process optimization, and outcome prediction. The effectiveness of different machine learning paradigms-supervised, unsupervised, and reinforcement learning-in improving ART-related procedures was particularly examined. The findings indicate that AI technologies significantly enhance ART processes by refining tasks such as embryo and sperm analysis and facilitating personalized treatment plans based on predictive modeling. Notable improvements were observed in the accuracy of diagnosing and predicting successful outcomes in fertility treatments. AI-driven models provided more precise forecasts of the optimal timing for clinical interventions such as egg retrieval and embryo transfer, which are critical to the success of ART cycles. The integration of AI into ART represents a transformative advancement, substantially improving the precision and efficiency of fertility treatments. The continuous evolution of AI methodologies is likely to further revolutionize this field, enabling more tailored and successful treatment approaches. AI is becoming an indispensable tool in reproductive medicine, enhancing both the effectiveness of treatments and the clinical decision-making process. This review underscores the potential of AI to act as a catalyst for innovative solutions in the optimization of ART.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenbo完成签到,获得积分10
2秒前
荔枝发布了新的文献求助20
2秒前
sound完成签到,获得积分10
3秒前
真实的依波完成签到,获得积分10
3秒前
3秒前
4秒前
小土豆完成签到,获得积分10
5秒前
Fiona完成签到 ,获得积分10
6秒前
量子星尘发布了新的文献求助20
6秒前
峰宝宝完成签到,获得积分10
6秒前
无脚鸟完成签到,获得积分10
8秒前
支雨泽发布了新的文献求助10
8秒前
8秒前
荔枝完成签到,获得积分10
9秒前
叁壹粑粑完成签到,获得积分10
10秒前
赵怼怼完成签到,获得积分10
11秒前
蓝色天空发布了新的文献求助10
12秒前
清爽达完成签到 ,获得积分10
12秒前
爱笑半雪完成签到,获得积分10
12秒前
少盐完成签到,获得积分10
12秒前
漂亮大树完成签到 ,获得积分10
12秒前
大福完成签到,获得积分10
13秒前
14秒前
15秒前
wangdana完成签到,获得积分10
17秒前
尚影芷完成签到,获得积分10
19秒前
Liao完成签到,获得积分10
19秒前
丁丁完成签到 ,获得积分10
19秒前
休眠的火山完成签到,获得积分10
20秒前
王肄博发布了新的文献求助10
21秒前
changping完成签到,获得积分10
21秒前
火羊宝完成签到 ,获得积分10
22秒前
白白完成签到 ,获得积分10
22秒前
22秒前
111完成签到,获得积分10
23秒前
nnnnn完成签到,获得积分10
23秒前
meng完成签到,获得积分10
23秒前
廿三完成签到,获得积分10
23秒前
跳跃完成签到,获得积分10
24秒前
冷酷夏真完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952372
求助须知:如何正确求助?哪些是违规求助? 4215173
关于积分的说明 13111456
捐赠科研通 3997149
什么是DOI,文献DOI怎么找? 2187760
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740