Artificial intelligence and assisted reproductive technology: A comprehensive systematic review

辅助生殖技术 生殖技术 系统回顾 工程伦理学 工程类 梅德林 政治学 生物 不育 怀孕 遗传学 法学 哺乳期
作者
Yen-Chen Wu,Emily Chia‐Yu Su,Jung-Hsiu Hou,Charles Noah Lin,Kat Lin,Chi-Huang Chen
出处
期刊:Taiwanese Journal of Obstetrics & Gynecology [Elsevier BV]
卷期号:64 (1): 11-26
标识
DOI:10.1016/j.tjog.2024.10.001
摘要

The objective of this review is to evaluate the contributions of Artificial Intelligence (AI) to Assisted Reproductive Technologies (ART), focusing on its role in enhancing the processes and outcomes of fertility treatments. This study analyzed 48 relevant articles to assess the impact of AI on various aspects of ART, including treatment efficacy, process optimization, and outcome prediction. The effectiveness of different machine learning paradigms-supervised, unsupervised, and reinforcement learning-in improving ART-related procedures was particularly examined. The findings indicate that AI technologies significantly enhance ART processes by refining tasks such as embryo and sperm analysis and facilitating personalized treatment plans based on predictive modeling. Notable improvements were observed in the accuracy of diagnosing and predicting successful outcomes in fertility treatments. AI-driven models provided more precise forecasts of the optimal timing for clinical interventions such as egg retrieval and embryo transfer, which are critical to the success of ART cycles. The integration of AI into ART represents a transformative advancement, substantially improving the precision and efficiency of fertility treatments. The continuous evolution of AI methodologies is likely to further revolutionize this field, enabling more tailored and successful treatment approaches. AI is becoming an indispensable tool in reproductive medicine, enhancing both the effectiveness of treatments and the clinical decision-making process. This review underscores the potential of AI to act as a catalyst for innovative solutions in the optimization of ART.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
568675467发布了新的文献求助10
1秒前
涛1118发布了新的文献求助10
2秒前
尽平梅愿完成签到 ,获得积分10
2秒前
Jasper应助好大一只小坏蛋采纳,获得10
2秒前
3秒前
3秒前
3秒前
充电宝应助GOODYUE采纳,获得10
3秒前
5秒前
wol007完成签到 ,获得积分10
5秒前
在水一方应助ylq采纳,获得10
5秒前
5秒前
Akim应助FACEISIN采纳,获得10
6秒前
大道至简应助猫红茶采纳,获得10
9秒前
wzhmark发布了新的文献求助30
11秒前
科研乞丐应助司空采纳,获得20
11秒前
11秒前
12秒前
尽快毕业完成签到 ,获得积分10
12秒前
突突兔完成签到 ,获得积分10
13秒前
呛呛发布了新的文献求助10
14秒前
傅宛白发布了新的文献求助10
14秒前
FashionBoy应助嘻嘻采纳,获得10
15秒前
15秒前
GOODYUE发布了新的文献求助10
16秒前
在水一方应助周周采纳,获得10
17秒前
李爱国应助wzhmark采纳,获得30
19秒前
20秒前
20秒前
21秒前
FF完成签到 ,获得积分10
24秒前
25秒前
Ymir发布了新的文献求助10
25秒前
26秒前
大个应助NingZH采纳,获得10
26秒前
应钟完成签到,获得积分10
27秒前
CipherSage应助差生文具多采纳,获得30
27秒前
ylq发布了新的文献求助10
30秒前
知栀完成签到 ,获得积分10
31秒前
周周完成签到,获得积分20
31秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4047049
求助须知:如何正确求助?哪些是违规求助? 3584852
关于积分的说明 11393315
捐赠科研通 3312170
什么是DOI,文献DOI怎么找? 1822485
邀请新用户注册赠送积分活动 894474
科研通“疑难数据库(出版商)”最低求助积分说明 816316