已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

CTUSurv: A Cell-aware Transformer-based Network with Uncertainty for Survival Prediction Using Whole Slide Images

计算机科学 人工智能 机器学习 深度学习 可靠性(半导体) 数据挖掘 功率(物理) 物理 量子力学
作者
Zhihao Tang,Lin Yang,Zongyi Chen,Liu Li,Chaozhuo Li,R. Chen,Xi Zhang,Qingfeng Zheng
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1
标识
DOI:10.1109/tmi.2025.3526848
摘要

Image-based survival prediction through deep learning techniques represents a burgeoning frontier aimed at augmenting the diagnostic capabilities of pathologists. However, directly applying existing deep learning models to survival prediction may not be a panacea due to the inherent complexity and sophistication of whole slide images (WSIs). The intricate nature of high-resolution WSIs, characterized by sophisticated patterns and inherent noise, presents significant challenges in terms of effectiveness and trustworthiness. In this paper, we propose CTUSurv, a novel survival prediction model designed to simultaneously capture cell-to-cell and cell-to-microenvironment interactions, complemented by a region-based uncertainty estimation framework to assess the reliability of survival predictions. Our approach incorporates an innovative region sampling strategy to extract task-relevant, informative regions from high-resolution WSIs. To address the challenges posed by sophisticated biological patterns, a cell-aware encoding module is integrated to model the interactions among biological entities. Furthermore, CTUSurv includes a novel aleatoric uncertainty estimation module to provide fine-grained uncertainty scores at the region level. Extensive evaluations across four datasets demonstrate the superiority of our proposed approach in terms of both predictive accuracy and reliability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
深情安青应助荼蘼采纳,获得10
2秒前
海绵宝宝完成签到,获得积分10
3秒前
毅诚菌发布了新的文献求助10
4秒前
5秒前
5秒前
奥特超曼完成签到,获得积分10
7秒前
Maxine完成签到 ,获得积分10
7秒前
斯文败类应助辛勤的乐曲采纳,获得10
10秒前
思源应助闪闪跳跳糖采纳,获得30
10秒前
Seeyou233发布了新的文献求助10
11秒前
11秒前
神奇小鹿完成签到 ,获得积分10
14秒前
善良黑夜发布了新的文献求助10
14秒前
852应助高高采纳,获得10
14秒前
15秒前
荼蘼发布了新的文献求助10
17秒前
小马甲应助科研通管家采纳,获得10
19秒前
Akim应助科研通管家采纳,获得10
19秒前
小二郎应助科研通管家采纳,获得10
19秒前
天天快乐应助科研通管家采纳,获得10
19秒前
科研通AI5应助科研通管家采纳,获得10
19秒前
星辰大海应助科研通管家采纳,获得30
19秒前
科研通AI5应助科研通管家采纳,获得10
20秒前
科研通AI2S应助科研通管家采纳,获得10
20秒前
乐乐应助科研通管家采纳,获得10
20秒前
彭于晏应助科研通管家采纳,获得10
20秒前
所所应助科研通管家采纳,获得10
20秒前
20秒前
李爱国应助dnmd采纳,获得10
20秒前
20秒前
小愿张完成签到,获得积分10
21秒前
阿松发布了新的文献求助10
21秒前
李爱国应助小黄采纳,获得10
23秒前
24秒前
大模型应助tcheng采纳,获得10
26秒前
29秒前
荼蘼完成签到,获得积分10
29秒前
小陆发布了新的文献求助10
29秒前
liao发布了新的文献求助20
30秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Walking a Tightrope: Memories of Wu Jieping, Personal Physician to China's Leaders 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3798236
求助须知:如何正确求助?哪些是违规求助? 3343666
关于积分的说明 10317296
捐赠科研通 3060451
什么是DOI,文献DOI怎么找? 1679529
邀请新用户注册赠送积分活动 806665
科研通“疑难数据库(出版商)”最低求助积分说明 763282