Integration of Multi-Source Medical Data for Medical Diagnosis Question Answering

计算机科学 答疑 医学影像学 情报检索 数据源 数据科学 人工智能
作者
Peng Qi,Jiankun Liu,Quan Zou,Xing Chen,Zheng Zhong,Zefeng Wang,Jiayuan Xie,Yi Cai,Qing Li
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:3
标识
DOI:10.1109/tmi.2024.3496862
摘要

Medical question answering aims to enhance diagnostic support, improve patient education, and assist in clinical decision-making by automatically answering medicalrelated queries, which is an important foundation for realizing intelligent healthcare. Existing methods predominantly focus on extracting key information from a single data source, e.g., CT image, for answering. However, these methods are not enough to promote the development of intelligent healthcare, because they lack comprehensive medical diagnosis capabilities, which usually require the integration of multi-source data (e.g., laboratory tests, radiology images, pathology images, etc.) for processing. To address these limitations, our paper introduces the extended task of medical question answering, named medical diagnosis question answering MedDQA. MedDQA task aims to answer questions related to medical diagnosis based on multi-source data. Specifically, we introduce a corresponding dataset that incorporates multi-source diagnostic information from 250,917 patients in clinical data from hospital records, and utilize a large-scale model for constructing Q&A pairs. We propose a novel system based on large language models, named medical multi-agent (MMA) system, which includes a mechanism of multiple agents to handle different medical tasks. Each agent is specifically tailored to process various modalities of data and provide outputs in a uniform textual modality. Experimental results demonstrate that the MMA system's architecture significantly enhances the handling of multi-source data, thereby improving medical diagnosis, establishing a robust baseline for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
RadiantYT完成签到,获得积分10
刚刚
刚刚
XRQ应助mmmmmagic采纳,获得10
刚刚
小超人发布了新的文献求助10
1秒前
116发布了新的文献求助10
1秒前
1秒前
2秒前
标致无血完成签到 ,获得积分10
2秒前
bao发布了新的文献求助10
2秒前
希望天下0贩的0应助123采纳,获得10
3秒前
又困发布了新的文献求助10
3秒前
4秒前
4秒前
夏夏完成签到,获得积分10
4秒前
吴所谓完成签到,获得积分10
4秒前
5秒前
Nancy发布了新的文献求助10
5秒前
Yan发布了新的文献求助10
5秒前
燕小丙完成签到,获得积分10
6秒前
小猪佩奇发布了新的文献求助10
6秒前
李健的小迷弟应助Loooong采纳,获得10
6秒前
枫叶发布了新的文献求助10
6秒前
HHH完成签到,获得积分10
6秒前
6秒前
a553355发布了新的文献求助10
6秒前
7秒前
7秒前
方圆几里发布了新的文献求助10
7秒前
苏楠完成签到 ,获得积分10
7秒前
可爱的函函应助爬不起来采纳,获得10
7秒前
动听衬衫应助zz采纳,获得20
7秒前
尉迟希望应助激昂的初阳采纳,获得10
8秒前
脑洞疼应助风清扬采纳,获得10
9秒前
9秒前
阿彬完成签到,获得积分20
9秒前
Selina完成签到 ,获得积分10
9秒前
何海发布了新的文献求助10
9秒前
Criminology34应助俏皮的荔枝采纳,获得10
10秒前
成就飞莲完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5258050
求助须知:如何正确求助?哪些是违规求助? 4419997
关于积分的说明 13758921
捐赠科研通 4293480
什么是DOI,文献DOI怎么找? 2356024
邀请新用户注册赠送积分活动 1352424
关于科研通互助平台的介绍 1313196