Challenging Conventional Perceptions of Oncogenes and Tumor Suppressor Genes: A Comprehensive Analysis of Gene Expression Patterns in Cancer

生物 基因 抑制器 癌症 计算生物学 基因组 功能(生物学) 下调和上调 疾病 癌细胞 生物信息学 遗传学 内科学 医学
作者
Mingyuan Zou,Qiu Li,Wentao Wu,Hui Liu,Xiao Han,Jun Liu
出处
期刊:Genes, Chromosomes and Cancer [Wiley]
卷期号:64 (2)
标识
DOI:10.1002/gcc.70030
摘要

Identifying genes involved in cancer is crucial for understanding the underlying molecular mechanisms of the disease and developing effective treatment strategies. Differential expression analysis (DEA) is the predominant method used to identify cancer-related genes. This approach involves comparing gene expression levels between different samples, such as cancerous and non-cancerous tissues, to identify genes that are significantly upregulated or downregulated in cancer. DEA is based on the commonly believed assumption that genes upregulated in cancerous tissues have the potential to function as oncogenes. Their expression levels often correlate with cancer advancement and unfavorable prognosis, whereas downregulated genes display the opposite correlation. However, contrary to the prevailing belief, our analysis utilizing The Cancer Genome Atlas (TCGA) databases revealed that the upregulated or downregulated genes in cancer do not always align with cancer progression or prognosis. These findings emphasize the need for alternative approaches for identifying cancer-related genes that may be more accurate and effective. To address this need, we compared the effectiveness of machine learning (ML) methods with that of traditional DEA in the identification of cancer-related genes. ML algorithms have the advantage of being able to analyze large-scale genomic data and identify complex patterns that may go unnoticed by traditional methods. Our results demonstrated that ML methods significantly outperformed DEA in the screening of cancer-related genes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助天天向上采纳,获得10
1秒前
Liu完成签到,获得积分10
1秒前
wyy发布了新的文献求助10
2秒前
淡然平灵发布了新的文献求助30
2秒前
2秒前
fuqiangaaa1发布了新的文献求助30
2秒前
hhh发布了新的文献求助10
2秒前
2秒前
2秒前
3秒前
暴躁的雁易完成签到,获得积分10
3秒前
Ava应助fqf采纳,获得10
3秒前
HP完成签到,获得积分20
3秒前
Cherry完成签到 ,获得积分10
3秒前
Akim应助瓶里岑采纳,获得10
3秒前
清脆元珊完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
SYLH应助科研挂采纳,获得10
5秒前
5秒前
T_完成签到,获得积分10
5秒前
111完成签到,获得积分10
6秒前
科目三应助静默向上采纳,获得10
6秒前
7秒前
7秒前
8秒前
兮兮发布了新的文献求助10
8秒前
9秒前
9秒前
劈里啪啦滴毛毛完成签到,获得积分10
9秒前
Jasper应助科学家采纳,获得10
9秒前
9秒前
在水一方应助轻松笙采纳,获得10
9秒前
科研通AI5应助bingbing采纳,获得10
10秒前
10秒前
lzy完成签到 ,获得积分10
10秒前
搜集达人应助练习者采纳,获得10
10秒前
lan完成签到,获得积分10
11秒前
excellent发布了新的文献求助10
11秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
The Healthy Socialist Life in Maoist China, 1949–1980 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785203
求助须知:如何正确求助?哪些是违规求助? 3330716
关于积分的说明 10247928
捐赠科研通 3046146
什么是DOI,文献DOI怎么找? 1671860
邀请新用户注册赠送积分活动 800891
科研通“疑难数据库(出版商)”最低求助积分说明 759798